
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Disjunction and Intervals in
Industrial-Strength Static Analysis

Sebastian Wilzbach

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Disjunction and Intervals in
Industrial-Strength Static Analysis

Disjunktion und Intervalle in statischer
Analyse mit industriellem Maßstab

Author: Sebastian Wilzbach
Supervisor: Prof. Dr. Helmut Seidl
Advisor: Prof. Dr. Helmut Seidl
Submission Date: 15.09.2020

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Saarbrücken, 15.09.2020 Sebastian Wilzbach

Acknowledgments

I would first like to thank my thesis advisor Prof. Dr. Helmut Seidl for introducing me
to this project as well as providing me with important suggestions in the early stages
of this thesis.

Furthermore, I would like to express my gratitude to Dr. Christian Ferdinand for of-
fering me this opportunity and AbsInt Angewandte Informatik GmbH for their support
throughout this thesis.

I would like to offer my special thanks to Dr. Stephan Wilhelm for his continued help,
advice and encouragements. As a reader of this thesis, I am gratefully indebted to him
for his very valuable comments.

I would like to offer my special thanks to Prof. Dr. Laurent Mauborgne for his feedback
and advice which was greatly appreciated.

I wish to thank Philipp Albert for his help in maintaining the technical infrastructure
and ensuring working from home was a seamless experience in these difficult times.

Finally, I would like to extend my thanks to all of my other colleagues from AbsInt
Angewandte Informatik GmbH for their input, help and support.

Abstract

Abstract Interpretation is a powerful technique to statically analyze and prove semantic
properties of a program. Finding exact answers to general questions about program
semantics is an undecidable problem, hence abstract interpreters approximate answers
by specialized abstract domains. A common abstract domain is the interval domain which
stores the range of all potential values of a variable as an interval. However, a frequent
pattern in industrial code is to use values outside of the range of the application domain
as additional information about a variable (e.g. MAX_INT as uninitialized or error state).
Such extremal values can lead to a high loss of information with the interval domain
and similar abstract value domains. In this work we investigate alternative domains to
retain precision for extremal values. An implementation of a dedicated domain - a set
of disjunctive intervals with a user-defined maximum cardinality N - is discussed in-depth
and has been added to the Astrée Static Analyzer. We evaluated the impact of this new
abstract domain on 19 medium-sized (10− 100k analyzed LoC) codes from real-world
software (mostly automotive and avionic software) and one large industrial automotive
code (∼ 400k analyzed LoC) in comparison to Astrée’s existing domains. We found that
the new abstract domain helped to reduce false run-time errors by on average 1.4%
per project in medium-sized codes and 0.6% in large industrial code, increased the
number of unreachable blocks by 1.3% per project in medium-sized codes and 5.5% in
a large industrial code. Depending on N, we measured an increase in memory usage
by 5− 8% per project in medium-sized codes and a decrease in the large code example
by 18− 38% and a run-time duration increase by 7− 22%. Most improvements were
observed with N = 2 yielding ∼ 50− 80% of all improvements. N = 3 increased the
results noticeable (∼ 10− 40%) whereas any higher N only lead to slight additional
improvements (< 10%).

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Interval abstract domain 5
2.1 Numerical domain . 5
2.2 Interval operations . 5
2.3 Partial order . 6
2.4 Interval lattice . 7
2.5 Abstract relationship . 9
2.6 Interval abstract operators . 11

2.6.1 Forward operators . 11
2.6.2 Backward operators . 13

2.7 Fixpoint approximation . 15
2.7.1 Widening . 15
2.7.2 Narrowing . 17

3 IntervalList abstract domain 18
3.1 Definition . 18
3.2 Partial order . 20
3.3 Lower and upper bound . 21
3.4 Hasse diagram . 21
3.5 Normalization . 23
3.6 Lattice . 24
3.7 Abstract and concrete relationships . 26
3.8 Galois connection . 26
3.9 Soundness correspondence . 27

4 IntervalList operations 30
4.1 Relations . 30

4.1.1 Subset . 30

v

Contents

4.1.2 Equality . 31
4.2 Transfer functions . 31

4.2.1 Union . 31
4.2.2 Intersection . 33
4.2.3 Forward arithmetic initialization 34
4.2.4 Forward unary arithmetic operations 35
4.2.5 Forward binary arithmetic operations 38
4.2.6 Backward comparison tests . 40
4.2.7 Widening . 45

5 Results 52
5.1 Medium-sized project evaluation . 53

5.1.1 Unreachable code statements . 53
5.1.2 Run-time error findings . 55
5.1.3 Analysis duration and memory usage 56

5.2 Large industry example . 57
5.2.1 Unreachable code statements . 58
5.2.2 Alarm findings . 58
5.2.3 Analysis runtime and memory usage 60

5.3 Code patterns of improved alarms . 62
5.3.1 Unreachable code . 62
5.3.2 Array Out-of-Bounds . 64
5.3.3 Invariants . 64
5.3.4 Read of a not written global variable 65

6 Summary 67

List of Figures 69

List of Tables 70

Bibliography 71

vi

1 Introduction

Static analysis of programs is an analysis technique in which program properties are
determined without executing the program. Abstract Interpretation introduced by
[CC77] is a formal static analysis framework that approximates code from its original
properties (concrete domain) into an alternative universe (abstract domain) with its own
set of properties. An abstract interpreter executes program computations in abstract
domains and, thus can approximate program semantics and statically provide answers
about certain program properties and run-time behaviors. In general, it is undecidable
whether a program given arbitrary input terminates (halting problem), hence an answer
from the abstract interpreter cannot necessarily be precise. However, this answer is a
sound approximation which guarantees to contain the exact answer.

A sound abstract interpreter cannot omit run-time errors (false negatives) from its
answer, but can over-approximate and emit false alarms (false positives). An abstract
interpreter will signal all potential and certain run-time errors [Cou00]. For a sound
abstract interpreter, the absence of alarms in its analysis formally guarantees the absence
of errors at run-time.

Many abstract domains have been proposed for handling different semantic aspects of
programs and these domains are typically combined to achieve a better approximation.
In this work we focus on non-relational abstract domains which specialize on value
properties of numerical variables in code and ignore potential relationships between
variables. Consider this illustratory program:

int main(int a)
{
int y = 2; // y = 2
if (a) { y = 8; }
return y; // y = ?

}

In this example, y could be abstracted by an interval domain ([2, 8]), a bitfield domain
(00001010), a congruence domain (2 ∗ x + 0), a finite set domain ({2, 8}), or a non-
zero domain (+). Each of these abstract domains provide a trade-off between loss
of precision vs. analyzer runtime and memory consumption of the analysis. In this
work, we evaluate the trade-off for a specific subset of programs - programs with

1

1 Introduction

unsigned char in_fn() {
unsigned char x = 255;
// read input
if (random > 0) {
x = (unsigned char) random * 4;

}
return x;

}

void out_fn(unsigned char x) {
if (x == 255) {
// special error handling

} else {
switch (x) {
case 0: case 1: case 2: case 3:
...

}
}}

void main(void) { out_fn(in_fn()); }

Listing 1.1: Illustratory code with usage of extremal values for representation of addi-
tional information. The floating point variable random is of range [0, 1[. The
input function in_fun can return four valid values (0, 1, 2, 3) and an invalid
state (255). The output function out_fn checks for the extremal value and
handles it differently. In practice, larger number and ranges are used.

extremal values. In performance-critical applications programmers often make domain-
specific assumptions about the range of their data types and avoid the overhead of a
more complex data type by using unused parts of the data type to store additional
information. A common example is the use of the maximum value of a data type as
an indication that a variable is in an invalid state (e.g. it was not initialized). Consider
the simple example program in Listing 1.1 which takes an input value from a sensor
via the input function in_fn and reports it via an output function out_fn. The input
function uses the maximum of its range to symbolize that its input value has not been
successfully read (here the maximum of unsigned char - 255).

This pattern appears frequently in low-level programming, but traditional abstract
domains have problems handling this properly. For example, the interval domain
approximates the range of x to [0, 255] and, thus after handling of the special value
255, the interval domain’s approximation of x is [0, 254]. It is possible to use the finite
set domain in this example ({0, 1, 2, 3, 255}), but in practice more numbers are used so
that listing all potential values in a set would lead to a drastic increase in memory
and runtime consumption. Therefore, in practice finite sets are only used with low
cardinalities (e.g. 3 or 5). Another common solution for this problem partitioning
variables of an analysis. However, when applied to n variables the analysis space and
time would grow exponentially and, thus partitioning can only be used to a limited
degree in acceptable time and memory bounds.

2

1 Introduction

Hence, there is an active interest from industry to improve abstract interpretation to
efficiently cater for this specific programming pattern of extremal variables. This work
looks at approaches for solving this problem. Figure 1.1 shows a visual representation of
the abstract domains being considered. Specifically, we will focus on a set of disjunctive
intervals with a user-defined maximum cardinality N as a general-purpose solution to this
problem.

In Chapter 2 we provide notations used in this work, introduce the traditional interval
abstract domain, and provide the principles of the Abstract Interpretation. We then
analyze the formal properties of the new IntervalList abstract domain in Chapter 3.
Afterwards, in Chapter 4 we discuss the individual operators and transformations of
this domain. In Chapter 5 we assess its improvements over state-of-the-art abstract
domains offered by the Astrée Static Analyzer [Cou+05; Cou+09] and present an
evaluation of its impact on real-world industry codes. Finally, we summarize the
findings in Chapter 6.

3

1 Introduction

x

y

(a) Intervals

x

y

(b) IntervalList with N ≤ 3

x

y

(c) Interval with extremal points

x

y

(d) IntervalList with N ≤ 5

Figure 1.1: Visual examples of different improvements to the interval abstract domain
(a) - the IntervalList abstract domain with a set of N intervals (b, d) or a
specialization with only a single main interval and two extremal points (c).

4

2 Interval abstract domain

In this section we give the notation of intervals and their operators as used in this
work. Furthermore, we provide an overview of the interval abstract domain and its
operations. Additionally, we summarize key Abstract Interpretation principles used in
this and subsequent sections.

2.1 Numerical domain

We restrict the discussion to abstract non-relational domains operating on finite integer
data types like unsigned int or long long. The respective finite integer domain is
represented by T and its product forms the interval domain I (T×T):

T = {x ∈ Z | Tmin ≤ x ≤ Tmax}
I = {[l, u] | l ∈ T, u ∈ T, l ≤ u}

(2.1)

As a shortcut for prime intervals [x, x] we write {x}. We will use x to denote the lower
endpoint of an interval and x to denote the upper endpoint of an interval:

x = {e ∈ Z | x ≤ e ≤ x} (2.2)

For individual integer values, the underline and overline operators are set to the identity
function (∀x ∈ T : x = x = x). We will restrict all further discussions to a program
space of a single variable as non-relational domains do not consider the relationship
between variables. However, it can easily be generalized as all variable states are
independent.

2.2 Interval operations

Furthermore, we define the cardinality of an interval (a ∈ I) as:

|a| def
= a− a (2.3)

5

2 Interval abstract domain

Note that |a| can never be negative as such invalid intervals are disallowed by definition
(Section 2.1). In addition, with definition 2.2 of the underline and overline operator
above this cardinality applies to integers as well (∀x ∈ T : |x| = 1). For completeness,
we define existence queries for a ∈ I, x ∈ T as expected:

x ∈ a def
=

{
> if a ≤ x ≤ a

⊥ otherwise
(2.4)

Moreover, to avoid ambiguity we define the absolute value of an interval with abs : I 7→ I

as:

abs(a) def
=

{
[0, max(C)] if 0 ∈ a

[min(C), max(C)] otherwise
with C = {abs(a), abs(a)} (2.5)

Finally, an interval a ∈ I can be compared against a number x ∈ T with a comparison
operator �l = {<,≤} and �r = {>,≥}:

x �l a def
= x �l a a �l x def

= a �l x

x �r a def
= x �r a a �r x def

= a �r x
(2.6)

2.3 Partial order

A partial ordering relation ≤ on a set S (poset) is required to have the following three
properties [DP02]:

1. reflexive: ∀x ∈ S : x ≤ x

2. transitive: ∀x, y, z ∈ S : x ≤ y ∧ y ≤ z =⇒ x ≤ z

3. anti-symmetric: x, y ∈ S : x ≤ y ∧ y ≤ x =⇒ x = y

A poset 〈P,≤〉 is a chain if all elements are comparable (∀x, y ∈ P : x ≤ y ∨ y ≤ x). It is
well-known that, for example, the set of integers (Z) forms a chain [DP02]. This applies
also for its subset T. We consider this natural order of intervals (x, y ∈ I) as defined in
[SWH12]:

x ≤I y def
= y ≤ x ≤ x ≤ y (2.7)

6

2 Interval abstract domain

1) Reflexivity:

a ≤I a = (a ≤ a) ∧ (a ≤ a) ∧ (a ≤ a) (≤ is reflexive in T)

= true∧ (a ≤ a) ∧ true

= (a ≤ a) (interval property)

2) Transitivity:

x ≤I y ∧ y ≤# z = (y ≤ x ≤ x ≤ y) ∧ (z ≤ y ≤ y ≤ z)

= (y ≤ x ≤ x ≤ y ≤ z) ∧ (z ≤ y ≤ y)

= z ≤ y ≤ x ≤ x ≤ y ≤ z (≤ is transitive in T)

= z ≤ x ≤ x ≤ z = x ≤ z

3) Anti-symmetry:

x ≤I y ∧ x ≤# y = (y ≤ x ≤ x ≤ y) ∧ (x ≤ y ≤ y ≤ x)

= (y ≤ x ∧ x ≤ y) ∧ (y ≤ x ∧ x ≤ y) (≤ is anti-symmetric in T)

=⇒ (x = y) ∧ (x = y)

= x = y

2.4 Interval lattice

We recall the standard definition of a lattice [Bir48]. A poset (S,v) is a lattice L if it has
the following four properties:

I an upper bound (ub) ∀x ∈ S : x v ub

II a lower bound (lb) ∀x ∈ S : lb v x,

III a least upper bound (lub) of any x, y ∈ S, s.t. with
x t y = a ∈ S : (x v a ∧ y v a) ∧ (∀b ∈ S : x v b ∧ y v b =⇒ a v b)

IV a greatest lower bound (glb) of any x, y ∈ S, s.t. with
x u y = a ∈ S : (a v x ∧ a v y) ∧ (∀b ∈ S : b v x ∧ b v y =⇒ b v a)

Note that (I) and (II) can be easily achieved by adding a new bottom element ⊥ (∀x ∈
S : ⊥ v x) and a new top element > (∀x ∈ S : x v >) to S. We define this dedicated
domain as DI = {I,⊥,>}. Additionally, note that for the integer interval domain >
could be represented by [Tmin, Tmax].

7

2 Interval abstract domain

An illustratory representation of this partial order is given as a Hasse diagram in
Figure 2.1. In a Hasse diagram order relations of a domain are depicted by edges.
Every edge represents an a v b (a, b ∈ DI) relation of the partial order where in the
Hasse graph a is in a lower level than b. Transitive order relations are not displayed.

[-1, 1]

[-1, 0] [0, 1]

{-1} {0} {1}

⊥

Figure 2.1: Hasse diagram of the interval abstract domain (DI ,v) for the subset
{−1, 0, 1}.

The following standard interval join and meet operations will be used to calculate the
least upper bound (lub, t) and greatest lower bound (glb, u) on intervals (a, b ∈ I):

a t b def
= [min(a, b), max(a, b)]

a u b def
=

{
[max(a, b), min(a, b)] if max(a, b) ≤ min(a, b)

⊥ otherwise

(2.8)

8

2 Interval abstract domain

We extend the defined ≤I ,t,u for DI as ≤#
I ,t#,u# and add lifting for ⊥ and >:

a ≤#
I b def

=



> if a = >∧ b = >
⊥ if a = ⊥∨ b = ⊥
⊥ if a = >
> if b = >
a ≤I b otherwise

a t# b def
=



> if a = >∨ b = >
⊥ if a = ⊥∧ b = ⊥
b if a = ⊥
a if b = ⊥
a t b otherwise

a u# b def
=



> if a = >∧ b = >
⊥ if a = ⊥∨ b = ⊥
b if a = >
a if b = >
a u b otherwise

(2.9)

Hence, the poset DI(≤#
I) can form an interval lattice LI(≤#

I ,>,⊥,t#,u#). The concrete
domain will be noted as DC and for this finite integer domain it is given by T. Similarly,
its concrete lattice with poset DC(⊆) is given by LC(⊆, T, ∅,∪,∩). Note that both
lattices are complete lattices - a lattice in which all subsets have a lub and a glb - as every
finite lattice is complete [Bir48].

2.5 Abstract relationship

In general, we establish a correspondence between the concrete domain (DC,⊆) and an
abstract domain (D#,v) with an abstraction function α : DC 7→ D# and a concretization
function γ : D# 7→ DC. Together they form the function pair 〈α, γ〉: (DC,⊆)

α

γ
(D#,v).

Any abstract property a ∈ D# is a sound approximation of a concrete property x ∈ DC if
α(x) v a. Moreover, soundness of an abstract property a ∈ D# requires the concretiza-
tion to fulfill: x ⊆ γ(a). Hence, an abstraction-concretization correspondence is sound if
∀x ∈ DC : x ⊆ γ(α(x)) [CC76].

9

2 Interval abstract domain

A Galois connection is defined between two complete lattices (D1,v1) and (D2,v2) via
a function pair 〈α, γ〉 and requires three properties [CC79]:

1. monotonic α ∈ (D1 7→ D2)

2. monotonic γ ∈ (D2 7→ D1)

3. ∀x ∈ D1 : ∀y# ∈ D2 : α(x) v2 y# ⇐⇒ x v1 γ(y#)

In Abstraction Interpretation a Galois connection allows for the establishment of a
formal relationship between the concrete domain lattice (DC,⊆) of a program and
an abstract domain lattice (D#,v). Note that it is only necessary to define either
the abstraction α or the concretization γ for a Galois connection as α and γ can be
synthesized from each other [CC92a, Prop. 5]:

α(x) def
= ⊔{y ∈ DI | x ⊆ γ(y)}

γ(y) def
=
⊔
{x ∈ DC | α(x) ≤#

I y}

We will now consider the interval domain with (DC,⊆) as concrete domain and (DI ,≤#
I)

as abstract domain and setup a Galois connection. We establish the correspondence
between concrete and abstract values with an abstraction function α : DC 7→ DI :

α(X)
def
=


⊥ if X = ∅

> if X = T

[min(X), max(X)] otherwise

Note, that with the definition of t for intervals (Section 2.4) this implies the following
concretization function γ : DI 7→ DC:

γ(Y) def
=


∅ if Y = ⊥
{x ∈ T} if Y = >
{x ∈ T | Y ≤ x ≤ Y} otherwise

The best approximation is an approximation function which performs the most precise
approximation for its domain (see [CC92b, p. 4.24]). The approximation α of the interval
domain is the best approximation (implied by the Galois connection).

10

2 Interval abstract domain

2.6 Interval abstract operators

The interval domain in Astrée has been implemented by Miné and most details are
provided in [Min04]. As a quick summary we list its abstract operators. Its best join
and meet operators are the lub and glb of the interval domain:

a# ∪# b# def
=



> if a# = >∧ b# = >
a# t b# if a# 6= ⊥∧ b# 6= ⊥
b# if a# 6= ⊥
a# if b# 6= ⊥
⊥ otherwise

a# ∩# b# def
=


b# if a# = >∧ b# 6= ⊥
a# if a# 6= ⊥∧ b# = >
a# u b# if a# 6= ⊥∧ b# 6= ⊥
⊥ otherwise

2.6.1 Forward operators

Forward semantic operators determine - given input states with invariants - invariants for
the resulting states [CC79]. We list all in system programming languages commonly
available unary and binary arithmetic operators. However, we omitted handling of the
special > and ⊥ elements for the individual operations as they can be lifted as follows:

�# a# def
=


⊥ if a# = ⊥
> if a# = >
�#′ a# otherwise

a# �# b# def
=


⊥ if a# = ⊥∨ b# = ⊥
> if a# = >∨ b# = >
a# �#′ b# otherwise

where �#′ is the respective arithmetic operation before lifting.

Forward arithmetic operators

For a monotone n-ary operator f : Tn 7→ T in the concrete domain a sound abstract trans-
former is any f # : (DI)n 7→ DI for which ∀(a1, ..., an ∈ (DI)n) : α(f (γ(a1), ..., γ(an))) v

11

2 Interval abstract domain

f #(a1, ..., an) or f (γ(a1), ..., γ(an)) ⊆ γ(f #(a1, ..., an)).
For binary operators the forward relation is r = a � b and the transfer operator

gives an r. For unary operators the relation is r = � a. The unary and binary sound
abstract transformers of the interval domain are:

−#a# def
= [−a#,−a#]

a# +# b# def
= [a# + b#, a# + b#]

a# −# b# def
= [a# − b#, a# − b#]

a#×#b def
= [min(C#), max(C#)] with C# = {a# × b#, a# × b#, a# × b#, a# × b#}

a#/#b# def
=

{
> if 0 ∈ b#

(a# div# (b u [Tmin,−1]#) t (a# div# (b# u [1, Tmax]#) otherwise

a div# b def
= [min(C#), max(C#)]# with C# = {a#/b#, a#/b#, a#/b#, a#/b#}

a# %# b# def
=



> if 0 ∈ b#

a# % b# if |a#| = 1∧ |b#| = 1

a# abs(a#) < b#

[0, abs(b#)− 1] if a# ≥ 0

[−abs(b#) + 1, 0] if a# ≤ 0

[−abs(b#) + 1, abs(b#)− 1] otherwise

Logical bitwise AND

a# &# b# def
=


a# & b# if |a#| = 1∧ |b#| = 1

[0, min(a#, b
#
)] if a# ≤ [0, 1] ∧ b# ≤ [0, 1]

a# logand b# if 0 ≤ a# ∧ 0 ≤ b#

> otherwise

a# logand b# =


[0, a# & f ill(b#)] if |a#| = 1

[0, f ill(a#) & b#] if |b#| = 1

[0, f ill(min(a#, b
#
))] otherwise

f ill(x) =


1 if y = 0

2y+1 − 1 if 2y = x

2y − 1 otherwise

with y = dlog2 xe

12

2 Interval abstract domain

Logical bitwise OR

a# |# b# def
=


a# | b# if |a#| = 1∧ |b#| = 1

[max(a#, b#), max(a#, b
#
)] if a# ≤ [0, 1] ∧ b# ≤ [0, 1]

a# logor b# if 0 ≤ a# ∧ 0 ≤ b#

> otherwise

a# logor b# =


[a#, c#] if |a#| = 1

[b#, c#] if |b#| = 1

[0, c#] otherwise

with c# = f ill(max(a#, b
#
))

Logical bitwise XOR

a# ⊕# b# def
=


a# ⊕ b# if |a#| = 1∧ |b#| = 1

[min(a#, b#), max(a#, b
#
)] if a# ≤ [0, 1] ∧ b# ≤ [0, 1]

[0, f ill(max(a#, b
#
))] if 0 ≤ a# ∧ 0 ≤ b#

> otherwise

Left and right shift

max_shift is the maximum valid allowed shift size for a specific variable type (typically
dlog2(Tmax − Tmin)e − 1).

a# « b# def
=


[min(C#), max(C#)] if b# ≤ [0, max_shift]

with C# = {a#«b#, a#«b#, a#«b#, a#«b#}
> otherwise

a# »# b# def
=


[min(C#), max(C#)] if b# ≤ [0, max_shift]

with C# = {a#»b#, a#»b#, a#»b#, a#»b#}
> otherwise

2.6.2 Backward operators

Backward semantic operators determine - given input states with invariants - the prior
invariants. They are typically evaluated during a backward program analysis with an
inverted program graph [CC79]. For binary operators the forward relation was r = a
� b and the backward transfer operator is now - given an approximation of r - refines
a# and b# further. Hence, a binary backward operator returns the duplet DI ×DI for

13

2 Interval abstract domain

the refined a#, b#. Analogous for unary backward operators the relation was r = � a
and only a# is refined. Miné [Min04] presented a mechanical way for generic backward
arithmetic operator synthesis based on given forward operators:

←−− # (a#, r#)
def
= (a# ∩ (−#r#))

←−
+ # (a#, b#, r#)

def
= (a# ∩# (r# −# b#), b# ∩# (r# −# a#))

←−− # (a#, b#, r#)
def
= (a# ∩# (b# +# r#)), b# ∩# (a# −# r#))

←−× # (a#, r#, b#)
def
= (a# ∩# (r#/#b#), b# ∩# (r#/#a#))

←−
/ # (a#, b#, r#)

def
= (a# ∩# (b# ×# (r# +# [−1, 1]#)),

b# ∩# ((a#/#(r# +# [−1, 1]#)) ∪# [0, 0]#))
←−
% # (a#, b#, r#)

def
= (a#, b#)

←−
& # (a#, b#, r#)

def
= (a#, b#)

←−
| # (a#, b#, r#)

def
= (a#, b#)

←−⊕ # (a#, b#, r#)
def
= (a# ∩# (r# ⊕# b#), r# ⊕# a#)

←−« # (a#, b#, r#)
def
= (a# ∩# (r# »# b#), b#)

←−» # (a#, b#, r#)
def
= (a# ∩# ((r# «# b#) +# [0, 2b# − 1]#), b#)

(2.10)

Backward tests

Backward tests allow refinement of variables based on assertions in code. Consider the
simple example from Listing 2.1. The invariant x# > 10 allows the interpreter to refine
x# in both code branches:

Listing 2.1: Illustratory example for backward comparison refinement

if (x > 10) {
// x ∩ [11, ∞]

} else {
// x ∩ [−∞, 10]

}

Whenever a backward test yields ⊥, the abstract interpreter can mark that code branch
as unreachable for the current context. A backward comparison test maps an abstract
domain duplet DI ×DI 7→ DI ×DI to a duplet which gives the refinement if the
comparison was truthy.

14

2 Interval abstract domain

a# ←−= b# def
= (c#, c#) with c# = a# u b#

a# ←−≤ b# def
= (a# u [Tmin, b#]#, b# u [a#, Tmax]

#)

a# ←−< b# def
= (a# u [Tmin, b# − 1]#, b# u [a# + 1, Tmax]

#)

a# ←−6= b# def
=



(⊥,⊥) if |a| = 1∧ |b#| = 1∧ a# = b#

(a#, [b# + 1, b]#) if |a#| = 1∧ a# = b#

(a#, [b#, b
− 1]#) if |a#| = 1∧ a# = b

#

([a# + 1, a#]#, b#) if |b#| = 1∧ a# = b#

([a#, a# − 1]#, b#) if |b#| = 1∧ a# = b#

(a#, b#) otherwise

By duality, the comparison can be inverted if refinement for falsy is desired.

2.7 Fixpoint approximation

A fixpoint is a point x of a poset S with a monotone mapping function f : S 7→ S
for which f (x) = x. We write FP for the set of fixpoints {x ∈ S | f (x) = x} of f .
Then, the least fixpoint (lfp) x of f is the fixpoint for which (1) ∀y ∈ FP : x v y and (2)
∀y ∈ FP : y 6v x. Analogous, the greatest fixpoint (gfp) x of f is the fixpoint for which
(1) ∀y ∈ FP : y v x and (2) ∀y ∈ FP : x 6v y. Additionally, the set of post-fixpoints is
{y ∈ S | f (y) v y} and the set of pre-fixpoints is {y ∈ S | y v f (y)} [CC92a].

2.7.1 Widening

For Abstract Interpretation loops are problematic as the evaluation might not terminate
if the program state iteration chain ⊥ v f (⊥) v ... v f n(⊥) v ... is infinite.

Widening is an extrapolation technique which over-approximates fixpoints in increasing
infinite chains. This over-approximation accelerates convergence of an increasing chain
and for infinite domains enforces termination of the abstract evaluation in finite many
iteration steps.

For two complete lattices D1 and D2 which are linked by a Galois connection 〈α, γ〉:
(D1,⊆)

α

γ

(D2,v), we know that their their fixpoints have the relation lfp(D1) ⊆
γ(lfp(D2)) [CC77]. Hence, a lfp in the abstract domain (D2) will be a sound representa-
tion of the program state.

15

2 Interval abstract domain

A sound approximation of a lfp in the abstract domain (D2) can be computed with
widening. Widening was first introduced by [CC76] and transforms any chain Xi into
an increasing chain Yi:

Yi def
=

{
Yi−1 tt Xi if i > 0

Xi otherwise

The widening operator tt: D# ×D# 7→ D# must have two properties:

1. ∀a, b ∈ D# : (a ∪ b) ≤ (a tt b)

2. n ∈ [0, z] : Yn+1# = Yn# z ∈N : z < ∞ (not strictly increasing)

The simplest form of interval widening (e.g. given in [SWH12]) is done by extending
the domain DI ∪ {−∞, ∞} = DJ . Note this results in [−∞, ∞] which could replace the
synthetic > element. Furthermore, all abstract operations need to be adjusted as well.
As an example, the partial relation ≤# would need to be extended to DJ ×DJ 7→ DJ :

a ≤# b def
=


> if b = ∞ ∨ a = −∞

⊥ if a = ∞ ∨ b = −∞

a ≤#′ b otherwise

where ≤#′ is the previous definition of ≤#.

Subsequently, the widening operator tt: DJ ×DJ 7→ DJ can be defined as:

a tt b def
=


b if a = ⊥
a if b = ⊥
[l, u] otherwise

where

l =

{
a if a ≤# b

−∞ otherwise

u =

{
a if a ≥# b

∞ otherwise

Delayed widening is a trick to improve widening which delays the over-approximating
impact of widening steps for fixed set of delay points DP {x ∈ N} and allows to
potentially reduce precision loss of too eager over-approximation:

16

2 Interval abstract domain

Yi def
=


Yi−1 t Xi if i > 0∧ i ∈ DP

Yi−1 tt Xi if i > 0

Xi otherwise

The delay points DP highly depend on the analyzed code and are a trade-off between
analysis duration and potential higher precision.

2.7.2 Narrowing

Narrowing as first introduced in [CC76] is another extrapolation technique which
attempts to improve the post-fixpoint yielded by widening through downward iterations.
Given a narrowing operator uu: D# ×D# 7→ D# with following two properties:

1. ∀a, b ∈ D# : (b ≤ a)⇒ (b ≤ (a uu b) ≤ a)

2. n ∈ [0, z] : Yn+1 # = Yn # z ∈N : z < ∞ (not strictly decreasing)

it is guaranteed that narrowing does not reduce the abstract representation below
lfp(D1) ≤ γ(Yn #) [CC92a, Prop. 30]. The simplest form of interval narrowing is:

a uu b def
=

{
⊥ if a = ⊥∨ b = ⊥
[l, u] otherwise

where

l =

{
b if a = −∞

a otherwise

u =

{
b if a = ∞

a otherwise

However, for finite integer abstract domains narrowing is useless [Ber+10] and we
set:

X# uu Y# def
= X# ∩# Y#

17

3 IntervalList abstract domain

A generalization of the interval abstract domain is to use a set of disjunctive intervals
which will be discussed in this section. Due to its underlying implementation we call
this abstract domain the IntervalList domain. We start by providing a formal definition
of the IntervalList abstract domain, explore other buildings blocks of this domain
(ordering, normalization procedure) and finally discuss properties of the domain.

3.1 Definition

An interval order is a linearly ordered set of intervals. Interval orders have one prob-
lematic property. They can have many distinct representations (e.g. {[1, 2], [2, 4]} =
{[1, 3], [3, 4]} = {[1, 4]}). Hence, we first need to definite a stricter representation, s.t.
there can only be one distinct representation. We define a special IntervalList domain E

which consists of an linearly ordered set of disjunctive intervals. The set cardinality cannot
be zero and must not be greater than the user-defined maximal cardinality N ∈N. The
space of E is IN . Furthermore, we require a (1) linear order and (2) intervals to neither
overlap nor be directly adjacent to ensure a unique representation:

E = {e1, . . . , ek} ei ∈ I, k ∈N : 1 ≤ k ≤ N

∀i ∈ [1, k− 1] : ei + 1 < ei+1

Note that these properties require a specific interval order which results in a unique,
distinctive representation as it is no longer possible to form overlapping or adjacent
intervals (e.g. {[1, 4]} cannot be represented as [1, 2], [3, 4]). Hence, we have a list of
intervals which is non-overlapping and thus have a linear order. Figure 3.1 shows
examples for the individual conditions. The cardinality of this set of intervals must be
limited by a constant as otherwise it would grow arbitrarily on every union.

Additionally, we define an unrestricted set of intervals Er = {e1, . . . , en} without
these properties to represent non-normalized lists of intervals. Furthermore, a special
bottom and top element are added to construct the abstract domain DE = {⊥, E,>}

18

3 IntervalList abstract domain

and DER = {⊥, Er,>} respectively. Note that this extension is not strictly necessary
as ∅ could have been used as the bottom element and [Tmin, Tmax] as the top element,
but we opted to use these additional elements as Astrée internally provides interfaces
which expect separate > and ⊥ elements.

Note that we opted to not include ∞ in this representation as (1) in Astrée the interval
domain is already using ±∞ and it would only provide a small additional benefit if
either of the ranges is ±∞, (2) this domain is intended to preserve the extremal values
before infinity, and (3) Astrée uses arbitrary-sized integer in its implementation which
allows to use [Tmin, Tmax] without overflow risks.

0 1 2 3 4 5 6 7 8 9 10

(a) {[7, 10], [1, 5]}
(no linear order)

0 1 2 3 4 5 6 7 8 9 10

(b) {[1, 4], [3, 5], [7, 10]}
(overlaps)

0 1 2 3 4 5 6 7 8 9 10

(c) {[1, 3], [3, 5], [7, 10]}
(adjacent intervals)

0 1 2 3 4 5 6 7 8 9 10

(d) {[1, 5], [7, 10]}
(unique representation)

Figure 3.1: Different, non-unique representations of the interval {[1, 5], [7, 10]}. (a) is
not a linear order, (b) has overlapping intervals, (c) has directly adjacent
intervals, (d) is the only and unique representation in this domain.

19

3 IntervalList abstract domain

3.2 Partial order

For a better distinction between intervals and lists of intervals, ≤ will be used for the
partial order of intervals (see Section 2.3) and v for the partial order of lists of intervals.
To construct this partial order, we define a v relation on DE ×DE that checks whether
all intervals in one list are fully included in one respective interval in the other list:

A v B def
=


true if A = ⊥∨ B = >
false if A = >∨ B = ⊥
∀a ∈ A : ∃b ∈ B : a ≤# b otherwise

(3.1)

Note that as there cannot be two directly adjacent intervals, there can only be at most
one interval b ∈ B that fully includes an interval of A. Two neighboring intervals of
B need to have a gap of at least 1 and thus can not fully include an interval. The v
relation between list of intervals is a partial order as it fulfills the three properties of a
partial order:

1. Reflexivity
By definition, ⊥ v ⊥ and > v >. For all other elements (A 6= ⊥ ∧ A 6= >), there

exists exactly one element e in A which contains a (a itself). An interval cannot be
a subset of another interval, as this would require overlapping intervals which are
excluded.

A v# A = (∀a ∈ A : a ≤# a) Interval reflexivity

= (∀a ∈ A : true)

2. Transitivity

A v# B ∧ B v# C = (∀a ∈ A : ∃b ∈ B : a ≤# b) ∧ (∀b ∈ B : ∃c ∈ C : b ≤# c)

= (∀a ∈ A : ∃b ∈ B : (∀b ∃c ∈ C) : a ≤# b ∧ b ≤# c

= (∀a ∈ A : ∃b ∈ B, ∃c ∈ C : a ≤# b ∧ b ≤# c

= (∀a ∈ A : ∃b ∈ B, ∃c ∈ C : a ≤# b ≤# c Interval transivitity

=⇒ (∀a ∈ A : ∃c ∈ C : a ≤# c)

3. Anti-symmetry

20

3 IntervalList abstract domain

A v# B ∧ B v# A = (∀a ∈ A : ∃b ∈ B : a ≤# b) ∧ (∀b ∈ B : ∃a ∈ A : b ≤# a)

= ∀a ∈ A : (∃b ∈ B : a ≤# b ∧ ∃c ∈ A : b ≤# c) ∧
∀b ∈ b : (∃a ∈ A : b ≤# a ∧ ∃d ∈ B : a ≤# d)

= ∀a ∈ A : (∃b ∈ B, ∃c ∈ A : a ≤# b ≤# c) ∧
∀b ∈ B : (∃a ∈ A, ∃d ∈ B : b ≤# a ≤# d)

As an interval order cannot contain overlapping intervals, a ≤# c is only possible iff
c = a and thus b = a. This applies to all b for all intervals in A. Similarly, b ≤# d is only
possible iff b = d and thus a = b. This applies to all a for all intervals in B. Hence, all
intervals must be identical and both lists are identical (A = B).

3.3 Lower and upper bound

Lower and upper bounds exist on a list of intervals as well. By the linear order of the
list, the lower bound is the lower bound of the first element and the upper bound is
the upper bound of the last element in the list. Together they define the hull of an
IntervalList (X ∈ DE):

X def
= {e1, . . . , eN} = e1

X def
= {e1, . . . , eN} = eN

hull(X)
def
= [X, X]

3.4 Hasse diagram

To obtain a better intuitive understanding of this partial order, a Hasse diagram for
a small instance of this domain is provided in Figure 3.2 for a Hasse diagram of
({−1, 0, 1},v) and Figure 3.3 for ({0, 1, 2, 3},v). Figure 3.2 is very similar to a corre-
sponding interval Hasse diagram from Figure 2.1 (only the center node {{−1}, {1}} is
different). Nodes which exist in the corresponding interval Hasse diagram have an ellipse
shape (interval lists with one interval), new nodes that cannot occur in the corresponding
interval Hasse diagram use a box shape (interval lists with more than one interval).

21

3 IntervalList abstract domain

{[-1, 1]}

{{-1}, {1}} {[-1, 0]} {[0, 1]}

{{-1}} {{0}} {{1}}

⊥

Figure 3.2: Hasse diagram of the IntervalList abstract domain (DE,v) for {−1, 0, 1}

{[0, 3]}

{{0}, [2, 3]} {[0, 1], {3}} {[0, 2]} {[1, 3]}

{{0}, {2}} {{0}, {3}} {[0, 1]} {{1}, {3}} {[1, 2]} {[2, 3]}

{{0}} {{1}} {{2}} {{3}}

⊥

Figure 3.3: Hasse diagram of the IntervalList abstract domain (DE,v) for {0, 1, 2, 3}

22

3 IntervalList abstract domain

3.5 Normalization

It is possible for operations to add or modify intervals so that the list of intervals no
longer fulfills the IntervalList properties (i.e. a function with DE 7→ DER). Hence, we
require a procedure (normalize) which can modify the list of intervals, such that it is
normalized to a unique representation.

For abstract operations which can add intervals and thus increase the set length,
we need to have a procedure that reduces the interval set length back to N. This is
done by enforceLength (see below). Similarly, the order invariant and no adjacency
invariant are guaranteed by the use of merge (defined below). Both procedures do not
modify valid input fulfilling all invariants of E, but only repair violations. As this is
very useful, we combine both procedures to normalize : DER 7→ DE:

normalize(X) =

{
X if X = >∨ X = ⊥
enforceLength(merge(X)) otherwise

The interval merging operation merge (Er 7→ Er) allows to combine overlapping and
adjacent intervals. This procedure is done by first sorting the interval set and then
checking every neighboring pair of intervals for direct adjacency or overlaps. Such
pairs are then merged with the interval join t (see Section 2.4).

merge(X) = merge′(sort(X))

sort(X) = {X1, ..., Xn} : ∀a, b ∈ X : a ≤′ b

a ≤′ b = a < b ∨ (a = b ∧ a ≤ b)

merge′(X) =


X if |X| ≤ 1

(X1 t X2) ∪ merge′(X \ {X1, X2}) if X1 + 1 ≥ X2

{X1, X2} ∪ merge′(X \ {X1, X2}) otherwise

enforceLength (Er 7→ DE) recursively finds the closest pair of intervals and merges it
until the the number of intervals in the set is lower or equal to N:

23

3 IntervalList abstract domain

enforceLength(X) =


⊥ if |X| = 0

X if |X| ≤ N

enforceLength(mergePair(X,

closestOverlap(X))) otherwise

closestOverlap(X) = a, b ∈ X : a 6= b ∧ 6 ∃c, d ∈ X : c 6= d ∧ |a− b| > |c− d|
mergePair(X, a, b) = X \ (a, b) ∪ (a t b)

An important detail in the implementation of closestOverlap is which interval pair to
pick when more than one interval pair with the same, smallest distance occurs in the list. Our
choice was to pick the interval pair which is closer to list center and was motivated by
the problem description of preserving extremal values.

One invariant of the abstract domain is to restrict the set cardinality within [1, N].
Instead of returning an empty set, operations on the IntervalList domain return ⊥.
Thus, all abstract operations can expect their input to conform to this invariant and in
particular do not need to handle the edge case E ∈ E : |E| = 0.

Note that normalize is surjective (there is only one unique possible normalization
of x), but it is not order-preserving (i.e. monotonically increasing) which would mean
∀x, y ∈ E, x ⊆ y ⇒ normalize(x) v normalize(y). This can shown by a negative
example with N = 3: {3, 6, 8, 10} ⊆ {3, 6, 8, 10, 11}, but:

normalize({2, 4, 8, 10}) = {[2, 4], 8, 10}
6⊆ normalize({2, 4, 8, 9, 10}) = normalize({2, 4, [8, 9], 10}) = {2, 4, [8, 10]}

However, as normalize never removes values and only might merges overlaps, it
is extensive (∀x ∈ DE : x v normalize(x)). Furthermore, note that in practice an
implementation does not need to recursively find the closest overlaps as the distance
will not change by merging intervals. Thus, a more efficient implementation can either
compute the interval distances once, sort, and store them for subsequent iterations or
alternatively it could even store distance information as part of the interval set in a
sorted data structure.

3.6 Lattice

In this section we attempt to create a lattice L for this domain (recall Section 2.4 for the
interval lattice).

24

3 IntervalList abstract domain

We try to define a interval list lattice as L = (DE,v,t,u,⊥,>). The lower bound ⊥
and upper bound > were explained in Section 3.2. Hence, we attempt to define the
least upper bound t (1) and the great lower bound u (2).

1) Join semi-lattice (DE,v,t), s.t. ∀x, y ∈ DE : x t y (lub)

x t y =


> if x = >∨ y = >
y if x = ⊥
x if y = ⊥
normalize({x1, ..., xn, y1, ..., ym}) otherwise

The least upper bound of > can only be > (case I). Whereas the least upper bound for
any element and ⊥ is the respective element (case II, III). For an arbitrary pair (case IV)
the least upper bound is exactly the unique representation of the join of both interval
lists as no smaller representation is valid. A valid solution can be found via normal-
ization (see Section 3.5). However, note that there might be multiple, incomparable
solutions and thus that this does not construct a join semi-lattice. For example, con-
sider {[10, 20], [30, 40]} t {[50, 60], [70, 80]}. As the location of the interval merge could
occur anywhere there a three potential results for the lub: {[10, 40], [50, 60], [70, 80]},
{[10, 20], [30, 60], [70, 80]}, and {[10, 20], [30, 40], [50, 80]}. However, the lub, by its defini-
tion, must be unique.

2) Meet semi-lattice (DE,v,t), s.t. ∀x, y ∈ DE : x u y (glb)

x u y =


⊥ if x = ⊥∨ y = ⊥
y if x = >
x if y = >
enforceLength(sort({x u# y | x ∈ X, y ∈ Y })) otherwise

The greatest lower bound of ⊥ can only be ⊥ (case I). Whereas the greatest lower bound
for any element and > is the respective element (case II, III). For an arbitrary pair (case
IV) the greatest lower bound is the unique representation of the intersection of both
interval lists. The intersection of two interval lists cannot introduce new overlapping
or directly adjacent intervals as neither of the interval lists contains overlapping or
directly adjacent intervals. It is possible, however, to have up to N − 1 new intervals
after the pairwise intersection of all intervals (see Figure 3.4 for an example) which is
why normalization in respect to the length is required.

25

3 IntervalList abstract domain

0 10 20 30 40 50 60 70 80 90 100

Figure 3.4: Pairwise intersection of {[10, 30], [50, 70], [90, 100]} ∩ {[10, 15], [20, 60],
[65, 95]} resulting in {[10, 15], [20, 30], [50, 60], [65, 70], [90, 95]}.

However, the merge of intervals, in general, might result in different sets. For example,
consider {[0, 30], [40, 70], [80, 90]} ∩ {[0, 10], [20, 70], [80, 90]} resulting in {[0, 10], [20, 30],
[40, 70], [80, 90]} which can be normalized as either {[0, 30], [40, 70], [80, 90]}, {[0, 10],
[20, 70], [80, 90]}, or {[0, 10], [20, 30], [40, 90]}. Thus, this definition does not construct a
meet semi-lattice and in general it is not possible when merging intervals semi-arbitrarily
to a fixed, maximum number of intervals.

3.7 Abstract and concrete relationships

Similar to Section 2.5 we establish the correspondence between concrete and abstract
values with an abstraction function α : DC 7→ DE:

α(X)
def
=


⊥ if X = ∅

> if X = T

normalize({[x, x] | x ∈ X}) otherwise

Example: α({2, 4, 6}) = {[2, 2], [4, 4], [6, 6]}, α({2, 4, 8, 20} = {[2, 4], [8, 8], [20, 20]}. Note
that as normalize is not monotonic (see Section 3.5), α cannot be monotonic either. This
will be relevant when looking at a potential Galois connection for this domain in the
next subsection. Following, we define a concretization function γ : DE 7→ DC:

γ(Y) def
=


∅ if y = ⊥
{x ∈ T} if y = >
{x ∈ T | ∀y ∈ Y : y1 ≤ x ≤ y1 ∨ · · · ∨ yN ≤ x ≤ yN} otherwise

3.8 Galois connection

We try to define a Galois connection from the concrete domain (T,⊆) to the abstract

domain (DE,v) with the function pair 〈α, γ〉: (T,⊆)
α

γ

(DE,v). Recall, that Galois

26

3 IntervalList abstract domain

connection are defined as [CC92b]:

∀x ∈ D : ∀y# ∈ D# : α(x) v# y# ⇐⇒ x v γ(y#)

After [CC93] the following five properties are needed to establish a Galois connection
between D and DE (and equivalent to the concise definition):

1. Partial ordering in the concrete ⊆ (given by T)

2. Partial ordering in the abstract v (see Section 3.2)

3. Monotonic concretization γ: a v a′ ⇒ γ(a) ⊆ γ(a′) (follows directly from γ being
a one-to-one isomorphic projection).

4. Sound approximation (see Section 3.9 below)

5. Most precise approximation ∀c ∈ D : ∀a ∈ DE : c ⊆ γ(a)⇒ α(c) v a

As the approximation is not the most precise approximation condition (5) is not fulfilled.
This can be shown by a negative example:

c = {1, 3, 7, 11} v {1, 3, [7, 11]} = γ(a)

α(c) = α({1, 3, 7, 11}) = {[1, 3], 7, 11} 6v {1, 3, [7, 11]} = a

Hence, with the defined abstract approximation and concretization function a Galois
connection for our domain cannot be obtained.

3.9 Soundness correspondence

Our desired approximation is not a Galois connection and, as a result, we loose
many interesting properties of Galois connections. Notwithstanding, the best abstract
approximation into D# can be created by ignoring the constraints defined in Section 3.1
as then we can use a one-to-one morphism α′(X) = {[x, x] | x ∈ X}. However, as this
would require vastly more space, the IntervalList domain normalizes this best abstract
approximation and tries to creates a "good-enough" approximation by trading precision
for reduced memory and increased speed without sacrificing soundness.

Recall that an abstraction is sound if no concrete values will be lost by neither the
abstract approximation nor concretization (∀c ∈ D : c v γ(α(c))). This is true for the
chosen approximation and concretization:

27

3 IntervalList abstract domain

{X1, ..., Xk} ⊆ γ(α({X1, ..., Xk}))
= γ(normalize({X1, ..., Xk})) ∀x ∈ DER : x v normalize(x)

⊆ γ({Y#
1 , ..., Y#

k })

= {x ∈ T | y#
1 ≤ x1 ≤ y#

1 ∨ · · · ∨ y#
N ≤ xk ≤ y#

N}

By definition of the interval list normalization (see Section 3.5) is extensive (inter-
vals can only be merged into bigger intervals, but not removed). Hence, the ab-
stract representation will always contain all elements of X, but may add more el-
ements. The chosen α is not a best approximation, but a sound over-approximation.
Furthermore, it fulfills the abstract minimality assumption (as stated in [CC92b], 4.23):
α = {〈c, a〉 | ∀a′ ∈ DE : (〈c, a′〉 ∈ σ : a′ v a) ⇒ (a v a′)} as there cannot be a better
approximation of a respective interval merge. An interval merge is optimal, but its
location may not (especially when considering equi-distant interval pairs). Hence, for
all possible variants a, b resulting from different interval pairs both a and b contain new
elements as part of their specific interval merge and thus : a 6v b ∧ b 6v a.

This correspondence is defined as a weak abstraction/concretization connection and any
soundness correspondence which fullfils the abstract minimality assumption is a weak
abstraction/concretization soundness correspondence (see [CC92b, Prop 8.1]). For
reference, the four properties of a weak abstraction connection are:

1. ∀c ∈ D : c ⊆ γ(α(c)) (see above)

2. γ∼γ ◦ α ◦ γ (a, b ∈ D : a∼b def
= a ⊆ b ∧ b ⊆ a)

3. ∀c ∈ D : ∀a ∈ DE : α(c) v a =⇒ c ⊆ γ(a) 6⇒ α(c) v a (first assumption
follows from extensiveness of α (c v α(c)) and γ: being a one-to-one mapping
(γ(α(c)) ⊆ γ(a) ∧ α(c) ⊆ γ(α(c))), for a negative example for the second part see
Section 3.8)

4. ∀c, c′ ∈ D : c ⊆ c′ 6⇒ α(c) v α(c′)

For the second property, in this case equality could be used as it is guaranteed that
there is only one unique representation. Furthermore, the input of any concretization
γ must have been valid in the abstract domain and as γ is a one-to-one isomorphic
projection, it does not add or remove any values and neither can the subsequent abstract
approximation, hence γ = γ ◦ α ◦ γ.

28

3 IntervalList abstract domain

An example for (4) is:

c = {0, 3, 7, 11} ⊆ {0, 3, 7, 9, 11} = c′

α(c) = α({0, 3, 7, 11}) = {[0, 3], 7, 11} 6v {0, 3, [7, 11]} = α(c′)

Finally, it should be noted that due to the abstract soundness assumption from [CC92b]
(4.19) any approximation which contains a sound approximation is sound as well:

∀c ∈ D : ∀a, a′ ∈ D# :
(
〈c, a〉 ∈ σ ∧ a v# a′ ⇒ 〈c, a′〉 ∈ σ

)
Reconsider the best abstraction α′ : T 7→ DER:

α′(X)
def
=


⊥ if X = ∅

> if X = T

{x ∈ X | [x, x]} otherwise

This abstraction α′ with the same concretization γ is a Galois connection as both ab-
straction and concretization are one-to-one projections and hence ∀x ∈ D : ∀y# ∈ D# :
α(x) =# y# ⇐⇒ x = γ(y#).

For the equivalent special cases ∀a ∈ DE : α′(a) = α(a) is trivially given. Consider
the main case - α(a) = normalize({[x, x] | x ∈ X}) = normalize(α′(a)). As normalize
is extensive, it can be seen that ∀a ∈ DE : α′(a) v α(a). Thus, the Galois connection
with abstract approximation α′ equally implies soundness for the choosen abstract
approximation of the IntervalList domain.

29

4 IntervalList operations

In this section the individual operations that are part of a non-relational domain in
Astrée are described in detail. For all operations below: X#, Y# ∈ DE. The interval
operator as defined in Section 2.6 often build the underlying building blocks. Further-
more, recall that for a monotone n-ary operator f : Tn 7→ T in the concrete domain
a sound abstract transformer is any f # : (DE)n 7→ DI for which ∀(a1, ..., an ∈ (DE)n) :
α(f (γ(a1), ..., γ(an))) v f #(a1, ..., an) or f (γ(a1), ..., γ(an)) ⊆ γ(f #(a1, ..., an)). We list all
non-trivial operations which are part of the implementation in Astrée.

4.1 Relations

Astrée uses subset or equality (subseteq) and equality (equal) during fixpoint iterations.
These functions are only valid in the abstract domain, but cannot be transferred into
the concrete. However, they can be used to determine if a fixpoint has been reached.

4.1.1 Subset or equality

Subset or equality uses the previously introduced v# operator from partial order (see
Section 3.2).

[[X ⊆ Y]]# def
=

{
true X# v# Y#

false otherwise

Consider the most common case X# 6= ⊥∧ X# 6= >, Y# 6= ⊥∧Y# 6= >:

[[X ⊆ Y]]# ⇐⇒ α(γ(X#) ⊆ γ(Y#))

= α

 |X|∧
i=1

Xi ⊆
|Y|⋃
i=1

Yi


6v (X# v# Y#)

This operation is not a transfer function. For example, this is possible:

30

4 IntervalList operations

X = {1, 5, 9} ⇒ X# = {1, 5, 9}
Y = {0, 11, 30, 40} ⇒ Y# = {[0, 11], 30, 40}

Here, X# v# Y#, but X 6⊆ Y.

4.1.2 Equality

Equality can be defined as [[X =# Y]] = X ⊆ Y ∧Y ⊆ X, but for the implementation it
is more efficiently defined as:

[[X =# Y]] , (|X#| = |Y#|) ∧
|X#|∧
i=1

X#
i = Y#

i

This operation is not transfer function. For example, this is possible:

X = {0, 5, 10, 30, 40} ⇒ X# = {[0, 10], 30, 40}
Y = {0, 6, 10, 30, 40} ⇒ Y# = {[0, 10], 30, 40}

Here, X# =# Y#, but X 6= Y.

4.2 Transfer functions

We provide abstractions for the union (subsection 4.2.1), intersection (subsection 4.2.2),
all arithmetic forward operators (subsection 4.2.3, subsection 4.2.4, subsection 4.2.5),
comparison backwards tests (subsection 4.2.6) and widening (subsection 4.2.7).

4.2.1 Union

The union of two interval lists concats all intervals and finds a valid abstraction (similar
to Section 3.6).

[[X ∪Y]]# ,



> if X# = >∨Y# = >
X# if X# 6= ⊥∧Y# = ⊥
Y# if X# = ⊥∧Y# 6= ⊥
⊥ if X# = ⊥∧Y# = ⊥
normalize(X# ∪Y#) if X# 6= ⊥∧Y# 6= ⊥

31

4 IntervalList operations

Proof:
I) if X# = > (and similar for Y# = >):

[[X ∪Y]]# ⇐⇒ α(γ(X#) ∪ γ(Y#))

= α

{x | x ∈ T} ∪
|Y|⋃
i=1

Yi


= α ({x | x ∈ T}) = >
v (X# ∪# Y#) = >

II, III) if X# = ⊥ (and similar for Y# = ⊥):

[[X ∪Y]]# ⇐⇒ α(γ(X#) ∪ γ(Y#))

= α

∅ ∪
|Y|⋃
i=1

Yi


= normalize

(
{Y#

1 , ..., Y#
N}
)
= Y#

v (X# ∪# Y#) = (∅ ∪# Y#) = Y#

IV) if X# = ⊥∧Y# = ⊥:

[[X ∪Y]]# ⇐⇒ α(γ(X#) ∪ γ(Y#))

= α(∅ ∪∅) = α(∅) = ⊥
v (X# ∪# Y#) = ⊥

V) if X# 6= ⊥∧Y# 6= ⊥:

[[X ∪Y]]# ⇐⇒ α(γ(X#) ∪ γ(Y#))

= α

 |X|⋃
i=1

Xi ∪
|Y|⋃
i=1

Yi


= normalize

(
{X#

1 , ..., X#
N , ..., Y#

1 , ..., Y#
N}
)

v (X# ∪# Y#)

= normalize
(
{X#

1 , ..., X#
N , ..., Y#

1 , ..., Y#
N}
)

Note that due to the sortedness of both lists, merge-sorting two interval lists can be done
in O(N). Merging the closest interval pairs for enforceLength during normalization,

32

4 IntervalList operations

however, is more expensive and might take up to O(N2) (with a recursive find) or
O(N ∗ log(N)) with a sorted tree or heap of closest interval pairs. For small N this
is not problematic, but if a higher N is used, it is worthwhile to consider a trade-off
with a less optimal heuristic to trade performance for a slight loss in precision. Such a
heuristic can be:

I apply merge with a lower N before the union and normalization. For example, for
a N = 5 interval list, first merge the closest overlapping intervals with N = 3 and
then join both three-element interval lists.

II pick the lowest and highest interval (due to the sortedness of both lists the lowest
and highest interval can be selected in O(1)) and merge all other intervals to the
center interval.

III randomly select N intervals from the union of both lists and grow these randomly
selected intervals by the process of merging the non-selected intervals with its
closest interval.

IV select N partitioning intervals from the union and merge non-selected intervals
into the closest partitioning. For example, such partition could retain the extremal
values (I1, N/2, IN) or (I1, closest(I1 + d/2), IN), but also be a general partitioning
of the list (closest(I1 + d/4), closest(I1 + 2d/4), closest(I1 + 3d/4)) (d = IN − I1).

4.2.2 Intersection

For the intersection of two interval lists we intersect every interval of X# with every
interval of Y# (similar to Section 3.6).

[[X ∩# Y]] ,



X# if Y# = >
Y# if X# = >
enforceLength(sort(C#)) if X# 6= ⊥∧Y# 6= ⊥∧ |C#| ≥ 1

C# = {x# u# y# | x# ∈ X#, y# ∈ Y#}
⊥ otherwise

I, II) X# = > (or Y# = >)

[[X ∩Y]]# ⇐⇒ α(γ(X#) ∩ γ(Y#))

= α
(
{x ∈ T} ∩ γ(Y#)

)
= α(γ(Y#))

v (X# ∩# Y#) = Y#

33

4 IntervalList operations

IV) X# = ⊥ (or Y# = ⊥, or X ∩Y = ∅)

[[X ∩Y]]# ⇐⇒ α(γ(X#) ∩ γ(Y#))

= α

∅ ∩
|Y|⋃
i=1

Yi


= α(∅) = ⊥
v (X# ∩# Y#) = ⊥

III) X# 6= ⊥∧Y# 6= ⊥

[[X ∩Y]]# ⇐⇒ α(γ(X#) ∩ γ(Y#))

= α

 |X|⋃
i=1

Xi ∩
|Y|⋃
i=1

Yi


= α

 |X|⋃
i=1

|Y|⋃
i=1

Xi ∩Yi


= normalize

(
{x# ∩ y# | x# ∈ X#, y# ∈ Y#}

)
v (X# ∩# Y#)

= enforceLength(sort({x# ∩# y# | x# ∈ X#, y# ∈ Y#}))

The intersection of two interval lists cannot introduce new overlapping or directly
adjacent intervals as neither of the interval lists contains overlapping or directly ad-
jacent intervals. Hence, merge cannot modify the list and (1) sorting, and (2) length
enforcement is equivalent to normalization. Furthermore, it is possible to avoid the
sorting as both interval lists are sorted and by intersecting every element of list X#

with all elements of Y#, the respective elements of list X# cannot increase and thus the
original list order is preserved. The complexity of the intersection as implemented is,
however, O(N2 + N2) = O(N2) as every element of X# might require a full list traversal
and the resulting list might have up to N − 1 new intervals which need to be merged
via enforceLength.

4.2.3 Forward arithmetic initialization

Astrée has three types of initialization operations: TOP (the full domain), BOT (no value
of the domain) and RANGE for an interval or point initialization. They are stated here
for completeness.

34

4 IntervalList operations

[[op#]] =


> if op# = TOP

⊥ if op# = BOT

{[l, h]} if op# = RANGE(l, h)

[[TOP]]# ⇐⇒ α(γ(>))
α({x ∈ T}) = >
v (TOP#) = >

[[BOT]]# ⇐⇒ α(γ(⊥))
α(∅) = ⊥
v (BOT#) = ⊥

[[RANGE(l, h)]]# ⇐⇒ α(γ({[l, h]}))
α({x ∈ T | l ≤ x ≤ h}) = {[l, h]}
v RANGE#(l, h) = {[l, h]}

Normalization is not necessary for RANGE as the set contains only a single interval.

4.2.4 Forward unary arithmetic operations

Astrée implements a few unary operations. Most notably, negation (4.2.4) and bound-
checking (4.2.4).

[[X �#]] =


> if X = >
⊥ if X = ⊥
neg# X# if �# = NEG

BOUND_CHECK# X# if �# = BOUND_CHECK op#

Negation

As the interval list is guaranteed to be sorted, the negation of it only requires to negate
each interval individually and reverse the interval list:

neg# X# = reverse([−y#,−x#] | [x#, y#] ∈ X#)

35

4 IntervalList operations

Hence, for negation normalize is equivalent to reverse:

[[NEG X]]# ⇐⇒ α(−γ(X#))

= α

− |X|⋃
i=1

Xi


= α

 |X|⋃
i=1

−Xi


= normalize

(
{[−x#,−x#] | x# ∈ X#}

)
v (NEG X#) = reverse({[−b#,−a#] | [a#, b#] ∈ X#})

Bound-checking

Bound-checking can result from a boolean coercion from the program (bool), an up- or
down-cast into a different data type (mod) or partitioning (intersect). The range and
keep bound-checking operations are only mentioned for completeness.

BOUND_CHECK# X# op# =



X# if op# = Keep

bool X# if op# = Bool

X# mod# m if op# = Mod m

{[l, h]} if op# = Range(l, h)

X# ∩# {[l, h]} if op# = Intersect(l, h)

bool X# =


{[0, 1]} if X# = >
{[0, 0]} if X# = {[0, 0]}
{[0, 1]} if 0 ∈ X#

{[1, 1]} otherwise

X# mod# m = normalize (x# mod m | x ∈ X#)

x# mod m =



[m, m] if x# − x# > m−m ∨
(x# −m) mod z > (x# −m) mod z

[m + (x# −m) mod z,

m + (x# −m) mod z] otherwise

with z = m−m + 1

In particular for mod:

36

4 IntervalList operations

[[X mod m]]# ⇐⇒ α(γ(X#) mod m)

= α

 |X|⋃
i=1

Xi

 mod m


= α

 |X|⋃
i=1

Xi mod m


= normalize

(
{(x# mod m) + m | x ∈ X#}

)
v (X# mod# m) = normalize({x# mod# m | x# ∈ X#})

Consequently, we need to ensure that mod# is sound (i.e. it does not loose any values
created by mod in the concrete). For this, we consider its cases individually:

Case Ia): x# − x# > m−m (x# contains more values than the new bound)

= normalize
(
{(x# mod m) + m | x# ∈ X#}

)
v (X# mod# m) = [m, m]

When X# might overflow, returning all possible concrete values [m, m] in abstract do-
main is a sound approximation.

Case Ib): (x# −m) mod z > (x# −m) mod z

Again, x# might overflow partially and hence similar to (Ia) the approximation
returns the full potential range.

The precision loss is only smaller for case (II). This means that for each interval the
modulo operation can be done individually:

= normalize
(
{(x# mod m) + m | x# ∈ X#}

)
v (X# mod# m)

= normalize({[m + (x# −m) mod z, m + (x# −m) mod z] | x# ∈ X#})

The resulting interval is at least as big as the concrete x# as the size of x# is guaranteed
to be lower than of m (Ia) and is monotonic (Ib). Hence, modulo on the lowest and
highest value of the interval will enclose all points in-between.

37

4 IntervalList operations

4.2.5 Forward binary arithmetic operations

All common arithmetic operations (addition, subtraction, multiplication, division,
modulo, bitwise and, bitwise or, bitwise xor, left shift, and right shift) can be abstracted
for the IntervalList domain. For the IntervalList domain the basic operation strategy is
for each interval of the first operand to apply the operation against all intervals of the
second operand using the interval operations defined in Section 2.6. Furthermore, it
needs to be ensured that there can be no underflows or overflows during any operation
and the result needs to be normalized afterwards. For some operations extra care must
be taken to avoid undefined operations like a division by zero.

[[A � B]]# =



> if A# = >∨ B# = >
⊥ if A# = ⊥∨ B# = ⊥
[Tmin, Tmax] if � = {/, %} ∧ 0 ∈ B#

(map /# A# (B# ∩# [Tmin,−1])) ∪# if � = / ∧min(B#) < 0 ∧
(map /# A# (B# ∩# [1, Tmax])) max(B#) > 0

map �# A# B# otherwise

s. t.

map �# A# B# =

{
normalize(C#) if |C#| > 0

> if |C#| = 0∨> ∈ C#

C# =

{{
> if c# < Tmin ∨ c# > Tmax

c# otherwise

∣∣∣∣∣ a# ∈ A#, b# ∈ B#

}
with c# = a# �# b#

For most operations �# can be defined as the minimum and maximum of all possible
values of the interval endpoints:

a# �# b# = [min(C#), max(C#)]

C# = {a# �# b#, a# �# b#, a# �# b
#
, a# �# b

#}

As we have seen in Section 2.6 for certain operations like addition or subtraction this
can be simplified to two operations:

a# +# b# = [a# + b#, a# + b
#
]

a# −# b# = [a# − b
#
, a# − b#]

38

4 IntervalList operations

The soundness proof is similar to the unary operations. For the general case with
X# 6= >∧ X# 6= ⊥, Y# 6= >∧Y# 6= ⊥:

[[X � Y]]# ⇐⇒ α(γ(X#) � γ(Y#))

= α

 |X|⋃
i=1

Xi �
|Y|⋃
i=1

Yi


= α

 |X|⋃
i=1

|Y|⋃
i=1

Xi � Yi


= normalize

(
{x# � y# | x# ∈ X#, y# ∈ Y#}

)
v (X# �# Y#) = normalize({x# � y# | x# ∈ X#, y# ∈ Y#})

Hence, arithmetic operations are sound as long as x � y ⊆ x# �# y#. With the definition
of �# above this is the case if the arithmetic operator is monotonic as the bounds are
kept (a ∈ S : ∀b ∈ S : a ≤ b)⇒ (∀b ∈ S : f (a) ≤ (b)).

The main difference of division is that it needs to partition the divisor into a positive
part and negative part if both can occur and join both results afterwards. However, if
it is possible for zero to be part of the divisor the operation is not defined and Astrée
triggers a division by zero alarms. Subsequently, to allow for a partial recovery of the
static analyzer and discovery of more alarms in the same run, the analysis is set to >
which is done in case (III) by the full range of the data type.

a# �# b# special case for |a| = 2∨ |b| = 2

The IntervalList domain can introduce one important special case: if either of the
operands is an interval of length 2, the resulting list will contain two intervals as
both values of the intervals are used to build a new interval, i.e. if |a| = 2, then
a# �# b# = {[a#, a#] �# b#, [a#, a#] �# b#}. This can reduce the loss of precision
for a few cases, e.g. x<<y with x in [5, 8] and y in [2, 3]. Here with minmax(X) =

[min(X), max(X)] we get {[5 << 2, 5 << 3], [8 << 2, 8 << 3]} = {[20, 32], [40, 64]} instead
of {minmax({ 5 << 2, 5 << 3, 8 << 2, 8 << 3})} = {minmax({20, 40, 32, 64})} = {[20, 64]}.
However, during preliminary evaluations we found almost no improvements for bigger
code whereas it did result in a significant increase in memory usage as for the most
common arithmetic operations it does not improve the result, but increases list size and
allocations.

Similar to the intersection, every element of the interval list of the first operand
requires a traversal of every element in the interval list of the second operand (O(N2)).

39

4 IntervalList operations

However, even without the above mentioned modification for interval lists of length 2,
the resulting list size can be up to N2 and thus requires N2−N merge operations which
with the linear recursive merge in O(N) leads to an overall O(N3). In practice, the used
N of this domain were sufficiently small (≤ 7). However, for bigger N it might be more
feasible to merge the interval list of both operands to a smaller N before computing the
arithmetic operations (see the performance consideration of the IntervalList union in
subsection 4.2.5 for details).

4.2.6 Backward comparison tests

Unary and binary backward arithmetic operators were derived mechanically after
Equation 2.10. Hence, we only provide backward comparison tests for equivalence,
in-equivalence and the standard ordering operations (<,≤,>,≥). Analogous to sub-
section 2.6.2 we define the backward comparison test f # : DE ×DE 7→ DE ×DE where
the resulting domain duplet represent the respective refined variables for a truthy
comparison.

Equality

Equality can be defined by re-using the previously defined intersection ∩# (see subsec-
tion 4.2.2). Furthermore, intersection is commutative (Y# ∩# X# = X# ∩# Y#):

[[X←−=Y]]# ,


> if X# = >∨Y# = >
(Z#, Z#) if Z# 6= ⊥ with Z# = X# ∩# Y#

⊥ otherwise

> must be lifted (I), ⊥ is lifted by (II). In addition, if X# and Y# do not overlap in the
abstract domain they can never be equal in the concrete as by the soundness property
x v γ(α(x)) with a one-to-one concretization mapping the abstract space must always
be a superset (III). Finally, we look closer at (II) for a single Z#:

[[X←−=Y]]# ⇐⇒ α(γ(X#) = γ(Y#))

= α

 |X|⋃
i=1

Xi =
|Y|⋃
i=1

Yi


= normalize

|X#|⋃
i=1

|Y#|⋃
i=1

X#
i ∩Y#

i


v (X# =# Y#) = X# ∩# Y# = {x# ∩# y# | x# ∈ X#, y# ∈ Y#}

40

4 IntervalList operations

In subsection 4.2.2 we have shown that X ∩Y v X# ∩# Y#.

Inequality

For inequality we can only refine variables further if either of intervals is a single prime
interval (point):

[[X
←−
6=Y]]# ,



> if X# = >∨Y# = >
⊥ if X# = ⊥∨Y# = ⊥
⊥ if equal(X#, Y#) ∧

∀x# ∈ X# : |x#| = 1 ∧
∀y# ∈ X# : |y#| = 1

(B#, A#) with

(A#, B#
11
) = ineq(Y#, X#) if isPoint(X#)

ineq(X#, Y#
11
) if isPoint(Y#)

(X#, Y#) otherwise

isPoint(A#) =

{
A1

= A1
#

if |A#| = 1

false otherwise

(I) and (II) are the usual lifting of unknown or impossible states. Note for (III) that we
cannot infer from equality in the abstract domain (see equal from subsection 4.1.2) that
they are equal in the concrete space in the general case. However, if all intervals are
points we have a special case as no normalization nor precision loss can have happened
yet.

[[X
←−
6=Y]]# ⇐⇒ α(γ(X#) 6= γ(Y#))

= α

 |X|⋃
i=1

Xi 6=
|Y|⋃
i=1

Yi


= α(∅) = ⊥
v (X# 6=# Y#) = ⊥

Lastly, for (IV) if either of the interval list is a single value, further refinement can
be done with ineq (E×T 7→ E). ineq removes the interval list consisting of single
value b# whenever possible from the intervals of A#. Note that enforceLength is only
required due to the interval splitting in case IV of ineq”.

41

4 IntervalList operations

ineq(A#, b#) = enforceLength(ineq′(A#, b#))

ineq′(A#, b#) =

{
∅ if |A#| = 0

(ineq′′(A#
1, b#), ineq′(A# \ A#

1, b#)) if |A#| ≥ 1

ineq′′(a#, b#) =




∅ if a# = a#

[a# + 1, a#] if a# = b#

[a#, a# − 1] if a# = b#

([a#, b# − 1], [b# + 1, a#]) otherwise

if a# < b# ∧ b# < a#

a# otherwise

In general, there are two different scenarios for inequality of an interval a# with a point
b# to consider: b# overlaps with a# (case I) or it does not (case II). In latter case (II)
we cannot perform refinement. Otherwise, we can consider the type of the overlap
and remove b# from the interval. Case (II) and all four potential sub cases of (I) are
illustrated in Figure 4.1.

a#

b#

(a) case (Ia)
(|a#| = 1)

(b) case (Ib)
(left endpoint)

(c) case (Ic)
(right endpoint)

(d) case (Id)
(within)

(e) case (II)
(no overlap)

Figure 4.1: Backward inequality test examples for the IntervalList. All five potential
cases are listed. a# and b# are represented by black, solid intervals. Grey,

dotted intervals represent the value of a# after refinement.

If an overlapping interval of A# consists of a single value as well (i.e. this value is the
same as b#) (Ia), we know that this interval cannot be equal to B# and can remove it
from the list. If the overlap happens at the lower (Ib) or upper (Ic) border of a#, we can
remove the respective endpoint from the interval a#. Finally, if the overlap is within a#

(Id), a# can be partitioned into two new intervals. Hence, overall case (III) and (IV) of
inequality with (|X#| = 1, similar for |Y#| = 1) are:

[[X
←−
6=Y]]# ⇐⇒ α(γ(X#) 6= γ(Y#))

= α

x 6=
|Y|⋃
i=1

Yi


= normalize

(
{y# \ x# | y# ∈ Y#}

)
v (X# 6=# Y#) = normalize({ineq′(Y#

1 , X1
#), ..., ineq′(Y#

N , X1
#)})

42

4 IntervalList operations

ineq’ guarantees to only remove at most the single value interval list X and thus
Yk \ X1 v ineq′(Y#

k , X1
#). It is worth mentioning that case (IV) of ineq” is the major

difference over the normal interval domain and allows to create holes in existing
intervals.

Comparison

For the remaining operators �cmp ∈ {<,≤,>,≥} each variable needs to be compared
against each other as cmp is not symmetric. The duality function revComp: {<,≤,>,≥
} 7→ {<,≤,>,≥} maps each comparison operator to its matching opposite and allows
the comparison refinement definition to be re-used for the variable Y. The refinement
for �cmp is based on cutting off the lower (or upper) part of a variable X# by the upper
(or lower) bound of Y in cmp.

[[X
←−−
�cmp Y]]# =



> if X# = >∨Y# = >
(A#, B#) if A# 6= ⊥∧ B# 6= ⊥ with

A# = cmp(X#, Y#,�#
cmp)

B# = cmp(Y#, X#, revCmp(�#
cmp))

⊥ otherwise

revCmp(�#
cmp) =


< if �#

cmp = >

≤ if �#
cmp = ≥

> if �#
cmp = <

≥ if �#
cmp = ≤

cmp(X#, Y#,�#
cmp) =


A# if |A#| > 0 with A# = {z# | e# ∈ X# ∧ z# 6= ⊥}

with z# = cut(e#, Y#,�#
cmp)

⊥ otherwise

The cut operation I×E 7→ I will cut the interval x# against the hull of Y# or remove
the interval x# entirely:

cut(x#, Y#,�#
cmp) =



[x#, min(x#, Y# − 1)] if �#
cmp = < ∧ x# < Y#

[x#, min(x#, Y#)] if �#
cmp = ≤ ∧ x# ≤ Y#

[max(x#, Y# + 1), x#] if �#
cmp = > ∧ x# > Y#

[max(x#, Y#), x#] if �#
cmp = ≥ ∧ x# ≤ Y#

⊥ otherwise

43

4 IntervalList operations

Overall for the comparison, case (I) is the lifting of unknown information. Hence,
we will look closer at case (II) and (III), but only consider one side and comparison
operator �cmp = <.

[[X ←−< Y]]# ⇐⇒ α(γ(X#) < γ(Y#))

= α

 |X|⋃
i=1

Xi <
|Y|⋃
i=1

Yi


= α

 |X|⋃
i=1

Xi < max(Y)

 sortedness =⇒ last interval has highest element

= α

 |X|⋃
i=1

Xi < max(YN)


= normalize

(
{x# < max(Y#

N) | x# ∈ X#}
)

No new nor growing intervals

= {x# < max(Y#
N) | x# ∈ X#}

v X# <# Y# = cmp(X#, Y#,<#)

=

{{
min(x#, Yn

− 1), min(x#, Yn
− 1) if x# < Yn

#

⊥ otherwise

∣∣∣∣∣ x# ∈ X#

}

Normalization will not result in any change as X# must have had valid IntervalList
properties (e.g. sortedness) and intervals can only either be removed fully (case (V) of
comp’) or be shrunken (case (I) - (IV) of cut).

Moreover, as part of the abstract approximation soundness we know that the abstract
properties of Y must contain all elements of the concrete, i.e. γ(Y1

#) ≤ min(Y1) and
max(YN) ≤ γ(YN

#
). If an entire interval x# is strictly bigger than Y# this implies that

∀a ∈ x : a > γ(min(YN)), but only by the assertion ∀a ∈ X : a < Y. Hence, this
comparison results in an empty (⊥) interval list and will be removed. If all intervals are
strictly bigger than Y# (case II of cmp), the entire test can never be valid as the abstract
domain is required to fully include all concrete elements. Therefore, all concrete values
must have been removed as well and the assertion cannot be valid (⊥).

Otherwise, in case (I) of cmp for all abstract intervals of X# we can soundly cut them
at Y#

n as every value of X# must be lower than Y#
n). Thus, ∀x ∈ X : x < max(YN) v

γ([x#, min(x#, Yn
− 1)]).

Apart from the equality backward test which uses list intersection (subsection 4.2.2),

44

4 IntervalList operations

these test can be done in O(N) as no normalization needs to be performed and every
interval list operand needs to be traversed exactly once and the underlying cut, ineq”
per interval can be done in O(1).

4.2.7 Widening

As we have seen in Section 2.7, widening is a fixpoint approximation technique. In this
section we have seen that a Galois connection between two lattices (D1,⊆) and (D2,v)
implies lfp(D1) ⊆ γ(lfp(D2)). After [CC92b, Prop 6.10] we can replace a widening
with a coarser widening without affecting soundness if (1) abstract minimality is satisfied
and (2) convergence of abstract iteration sequences exist, their limits are: α(F) v F#.
The first assumption was shown in Section 3.9, and thus for overall soundness of
IntervalList widening we only need to ensure that widening operator is (a) sound and
(b) convergent. As DI is a finite domain, termination and convergence (b) at a fixpoint
must happen in finite steps. However, it is desirable to converge on a fixpoint in a
reasonable amount of iterations. Moreover, it should be noted that the IntervalList
abstract approximation is not an best approximation and neither is its widening. Hence,
its widening only be guarantees to result in a post-fixpoint.

In general, the widening of the IntervalList domain tries to preserve existing extremal
points. If possible, it will ignore intervals which occur unchanged in both X# and Y#

and only widen new or changed intervals.
Astrée uses a few widening strategies: (I) widening with a dynamic delay counter δ, (II)

widening with a static ramp, (III) widening with a dynamic ramp, and (IV) widening with
a dynamic range. Thus, its widening relation provides dynamic parameters which are
forwarded to the next widening iteration: tt: DE ×DE ×K 7→ DE ×K. The dynamic
information for the IntervalList domain K is a loop iteration counter of N, a static ramp
set RS in P(T) with a fixed maximum cardinality |RS| < k, a dynamic threshold RT of
P(T) with a fixed maximum cardinality |RT| < i, and a dynamic range interval RD of I.
We summarize all ramp parameters as R = (RS, RT, RR). Hence the extra information
K is N× R. The widening for a single variable in the IntervalList domain is:

[[X tt Y]]# (δ, R) def
=


> (δ, R) if X# = >∨Y# = >
X# (δ, R) if Y# v X#

((X# t# Y#)R) (δ + 1, R) if delay(δ)

((X# tt
′# Y#)R) (δ + 1, R) otherwise

The delay counter δ is incremented with every widening iteration except for the first
and second case (widening terminations) in which no iterations are required. The

45

4 IntervalList operations

number of widening steps is limited by the number of delays allowed by delay(δ)
and the number of ramp steps. Astrée allows the user to choose his trade-off of (a)
widening with few ramp parameters ("quick widening") with a potentially higher loss
in precision, but faster runtime and (b) widening with more ramp parameters, but
higher runtime. In practice, the latter option is typically used for smaller codebases
and only reduced to "quick widening" for large codebases with high runtimes of their
code analysis.

As stated above, correctness for widening implies that (1) the widening chain is stable
in finite time and (2) every iteration is a superset of its previous widening iteration:

∀a#, b# ∈ A# : γ(a#) ⊆ γ(a# tt b#) ∧ γ(b#) ⊆ γ(a# tt b#)

The termination cases (I, II) are sound as > is the superset of all elements (I) and
in the second case (II) a fixpoint has been reached (Y# v X# by definition and thus
X# v X#).

Delaying iterations (III). A special delay function can decide on whether to delay the
widening and instead perform a union. This operation is sound by the definition of the
union and as long as delay(δ) is truthy for only a constant of values termination and
convergence is guaranteed. However, the trick is to find the balance between runtime
and loss of precision for a specific application. An example of widening with delays
can be seen in Figure 4.2.

Finally, we need to consider actual widening (IV). For this we consider the individual
intervals and partition into identical (X#

eq) and non-identical intervals (X#
neq, Y#

neq). The
underlying idea is to preserve and avoid widening unchanged extrema intervals X#

eq.
Widening should only be performed on intervals which have been altered in the current
iteration step, i.e. on partially matching or non-matching intervals (see Figure 4.3 for
examples). The final widening is the union of the non-widened intervals X#

eq and the
widened intervals (X#

neq, Y#
neq):

X#
eq = Y#

eq
def
=
|X#|⋃
i=1

(X#
i =# Y#

i)

X#
neq = X# \ X#

eq

Y#
neq = Y# \ X#

eq

(X# tt
′# Y#)R = X#

eq t# ((X#
neq tt

′′# Y#
neq)R)

(4.1)

46

4 IntervalList operations

int x = 0;
if (random) { x = 444; }
while (x < 300) {
x += 5;

}

step x
1 {{0}, {5}, {444}}
2 {{0}, [5, 10], {444}}
3 {{0}, [5, 15], {444}}
4 {{0}, [5, 15], {444}} tt {{0}, [5, 20], {444}} = {{0}, [5, 41], {444}}
5 {{0}, [5, 46], {444}}
6 {{0}, [5, 51], {444}}
7 {{0}, [5, 51], {444}} tt {{0}, [5, 56], {444}} = {0}, [5, 299], {444}}
8 {0}, [5, 304], {444}}

(a) Widening with delays at steps 1, 2, 3, 5, 6, 8 and widening at steps 4 and 7.

step x
1 {{0}, {444}} tt {{0}, {5}, {444}} = {{0}, [5, 46]{444}}
2 {{0}, [5, 46]} tt {{0}, [5, 51], {444}} = {[0, 299], {444}}
3 {[0, 299], {444}} tt {[0, 304], {444}} = {[0, int.max]}

(b) Widening without delays

Figure 4.2: Interval list widening example with and without delays.
RS = {−46, 46}, RD = {299}, RR = {int.min, int.max}

X
Y

0 1 2 3 4 5 6 7 8 9 10

(a) X#
eq = {[1, 5]}, X#

neq = {},
Y#

neq = {[7, 10]}

X
Y

0 1 2 3 4 5 6 7 8 9 10

(b) X#
eq = {[7, 10]}, X#

neq = {[1, 3]},
Y#

neq = {[1, 4]}

Figure 4.3: Interval list widening partitioning examples. Grey intervals are identical
(eq), black intervals are mismatching (neq).

47

4 IntervalList operations

Non-identical intervals (X#
neq, Y#

neq)

The widening of X#
neq with Y#

neq is performed by widening each interval of X#
neq tY#

neq
individually and distinguishing between two main cases: (I) existence of partially
matching intervals in X#

neq and (II) no matching intervals X#
neq. Additionally, when existent

we use the closest interval (including identical intervals) on the left side (prev) and on
the right side (next) as widening ramps to avoid widening over neighboring intervals
in one widening step.

(X#
neq tt

′′
Y#

neq)R def
=



[widen_hull(c#, [H#, H#

], R, if ∃x# ∈ X#
neq :

prev#, next#) overlap(x#, c#)

widen(c#, R, prev#, next#) otherwise

∣∣∣∣∣∣∣∣ c ∈ (X#
neq t# Y#

neq)


prev# =

{
z# if ∃z# : ∀d# ∈ (X#

eq t# (X#
neq t# Y#

neq)) : z# < c# ∧ ¬(d# < c# ∧ z# < d#)

⊥ otherwise

next# =

{
z# if ∃z# : ∀d ∈ (X#

eq t# (X#
neq t# Y#

neq)) : c# < z# ∧ ¬(c# < d ∧ d# < z#)

⊥ otherwise

H# = {x# | x# ∈ X#
neq ∧ overlap(x#, c#)}

(4.2)

Case (I) represents intervals which overlap with at least one interval from the previous
iteration (Xneq). In this case the respective interval can be widening against the hull of
all respective overlapping intervals (see Figure 4.4 for examples).

X
Y

1 2 3 4 5 6 7 8 9 10

(a) {[1, 5]} tt {[1, 6]}, H = [1, 5]

X
Y

1 2 3 4 5 6 7 8 9 10

(b) {[1, 3], [5, 6]} tt {[1, 7]}, H = [1, 6]

Figure 4.4: Interval list widening of partially matching intervals examples.

48

4 IntervalList operations

However, when the interval has no overlapping intervals (case II), it requires more
distinctions (see Figure 4.5 for examples). If there are no intervals in Xneq, the interval
was a newly added value. If the new interval was either added to the right (I) or left
(II), widening will be performed only in one direction (see Figure 4.5 (a) and (b)). The
motivation for this behavior is to preserve existing interval gaps during the widening.
Otherwise, full widening must be performed in both directions, but should use prev
and next (if available) as additional dynamic ramp parameters.

X
Y

1 2 3 4 5 6 7 8 9 10

(a) [7, widen_right(10,⊥)]

X
Y

1 2 3 4 5 6 7 8 9 10

(b) [widen_left(1,⊥), 4]

X
Y

1 2 3 4 5 6 7 8 9 10

(c) widen([5, 6], [1, 3], [8, 10])

X
Y

1 2 3 4 5 6 7 8 9 10

(d) widen([2, 3],⊥, [6, 9])

X
Y

1 2 3 4 5 6 7 8 9 10

(e) widen([7, 9], [1, 5],⊥)

X
Y

1 2 3 4 5 6 7 8 9 10

(f) widen([5, 6], [1, 3], [8, 10])

Figure 4.5: Interval list widening addition examples (without ramp parameters). The
black interval of Y is widened. Identical intervals are colored in solid gray

lines and overlapping intervals are colored in dashed gray lines.

49

4 IntervalList operations

The widening of individual intervals takes into account a widening range Rr (typically
[Tmin, Tmax]), a pre-defined static widening ramp set (Rs) and dynamic threshold set
(RD).

widen(x#, R, prev#, next#)
def
=


[widen_left(x#, R, prev#), x#] if prev# = ⊥
[x#, widen_right(x#, R, next#)]] if next# = ⊥
[widen_left(x#, R, prev#), otherwise

widen_right(x#, R, next#)]

widen_hull(x#, a#, R, prev#, next#)
def
=

[{
a# if a# ≤ x#

widen_left(x#, R, prev#) otherwise
,{

a# if a# ≥ x#

widen_right(x#, R, next#) otherwise

]
(4.3)

The individual widening operations widen_left and widen_right are defined as:

widen_left(x#, R, prev#)
def
=

{
prev# if prev# 6= ⊥∧ l′ ≤ prev#

l′ otherwise

with l′ = max(Rr, prevElement(x#, RS),

prevElement(x#, RD))

widen_right(x#, R, next#)
def
=

{
next# if next# 6= ⊥∧ next# ≤ r′

r′ otherwise

with r′ = min(Rr, nextElement(x#, RS),

nextElement(x#, RD))

(4.4)

nextElement(x#, L) = a# ∈ L : x# ≤ a# ∧ 6 ∃b# ∈ L : x# ≤ b# ∧ b# ≤ a#

prevElement(x#, L) = a# ∈ L : a# ≤ x# ∧ 6 ∃b# ∈ L : b# ≤ x# ∧ a# ≤ b# (4.5)

With this widening strategy identical intervals are kept and mismatching intervals
(X#

neq t Y#
neq) are widened. The additional normalization during the union can only

increase the interval list to a superset. We can summarize for Z# = X# tt
′# Y#:

1. X#
eq v Z# ∧Y#

eq v Z# (Equation 4.1)

50

4 IntervalList operations

2. ∀a# ∈ T : prevElement(a#) ≤ a# ∧ a# ≤ nextElement(a#) (Equation 4.5)

3. ∀a# ∈ T : widen_left(a#) ≤ a# ∧ a# ≤ widen_right(a#) (Equation 4.4)

4. ∀A# ∈ I : A# v widen(A#) (Equation 4.3)

a) A# v [widen_left(A#), A#
] if left-most interval

b) A# v [A#, widen_right(A#
)] if right-most interval

c) A# v [widen_left(A#), widen_right(A#
)]

5. ∀A# ∈ I : A# v widen_hull(A#) (Equation 4.3)

a) A# v [H#, H#
] when H# ≤ H# ∧ H# ≤ H#

b) A# v [H#, widen_right(A#
)] when H# ≤ A#

c) A# v [widen_left(A#), H#
] when A# ≤ H#

d) A# v [widen_left(A#), widen_right(A#
)]

6. X#
neq v C# ∧Y#

neq v C# with C# = {op(c#) | c# ∈ (X# tt
′′# Y#)} (Equation 4.2)

a) c# v op(c#) = widen_hull(c#)

b) c# v op(c#) = widen(c#)

7. C# v Z (Equation 4.1)

Each individual widen step for mismatching intervals (X# tt
′′# Y#) can only use

extensive operations. Therefore, we conclude for the last step (IV) of tt# that X# =

{X#
eq, X#

neq} v (X# tt
′# Y#) and Y# = {Y#

eq, Y#
neq} v (X# tt

′# Y#)

Additionally, we experimented with a few variants of IntervalList widening. For
example, we tested an inserting additional dynamic ramps based on the distance of the
current interval to its respective prev and next intervals with an inverse binary exponential
backoff. Hence, an additional ramp could be given depending on a defined stop distance
c (e.g. 100):

right_ramp(x, next) =

{
|x− next|/2 if next 6= ⊥∧ |x− next| > c

next otherwise

left_ramp(x, prev) =

{
|prev− x|/2 if prev 6= ⊥∧ |prev− x| > c

prev otherwise

However, we did not find precision improvements with this additional ramp.

51

5 Results

The IntervalList domain has been implemented as an optional domain for the Astrée
Static Analyzer. For this evaluation we measured the impact of the IntervalList domain
on real-world industrial software from the automotive and avionics domain. The codes
have been anonymized and will only be described by parameters like code size, number
of functions, or number of tasks. For each of these codes, a configuration for an Astrée
analysis was already available prior to our evaluation. Analyzer settings correspond
to typical industrial usage scenarios. We used the same subset of abstract domains,
semantic and precision options, and checks for coding guidelines. We compared the re-
sults and performance of a baseline run (IntervalList abstract domain disabled) against
various improvement runs (IntervalList abstract domain enabled with specific options).
All evaluations were performed with a development version of Astrée 20.10.

It should be noted that all analysis configurations have already been optimized to
obtain high quality results from the analyzer (see [DS07] for an overview of false alarm
reduction technique). Moreover, the IntervalList domain was only implemented for in-
tegers and has little effect on codes which perform extensive floating-point calculations.
Thus, we only considered projects which use integer variables to a significant degree.
Finally, analysis configurations for larger codes typically enable only a small subset
of domains to allow for an analysis within acceptable time and memory bounds. We
therefore expect a slight bias of the effectiveness towards larger code bases. However,
since these codes often cannot be analyzed successfully with some of the advanced
abstract domains, we believe this to be a fair assessment of the impact of the IntervalList
domain as it measures against the status quo.

First, we summarize the impacts on multiple smaller industry codes (Section 5.1).
Afterwards, we have a closer look at the impact of the specialized domain to a larger
industry code (Section 5.2) and finally we show individual code patterns for which the
IntervalList domain can provide better approximations (Section 5.3).

52

5 Results

5.1 Medium-sized project evaluation

In this section we evaluate the impact of the IntervalList domain on 19 small- and
medium-sized industry codes from mostly automotive and avionic software. We
provide only summarized overall and per-project overviews. The analyzed statements in
these projects are within the range of 5.000− 100.000 and on average have approximately
30.000 statements. All analyses were run on a workstation with an Intel(R) Core(TM)
i7-6700 CPU @ 3.40GHz processor and 64 GB RAM.

In the overview tables below the baseline run (N = 0) is stated in absolute values
whereas results from individual runs with the IntervalList domain enabled from N = 2
to N = 7 are given relative to their respective baseline. The three major findings of this
evaluation are:

1. 0.3 − 0.4% more unreachable statements (relative to all prior reachable code
statements) and up to 1.4% more unreachable code alarms (subsection 5.1.1).

2. 0.3% less false run-time errors over all analyzed code statements (1.3% per project)
and up to 8.4% less false run-time alarms in individual projects (subsection 5.1.2).

3. 7− 11% overall (5− 8% per project) memory usage increase (subsection 5.1.3).

5.1.1 Unreachable code alarms and newly proven unreachable code
statements

Overall the IntervalList domain proves about 0.4% more unreachable statements (see
Table 5.1 for details) relative to all prior reachable code statements in the baseline run.
Starting with N = 3 we observed only minimal improvements for higher N. This is
an expected finding as most improvements were intended to originate from a better
abstraction of extremal variables with an uninitialized state which already happens at
N = 2. Further improvements are often due to better abstraction of state variables, but
most projects do not have complex branching logic or state variables with more than
two constant holes. Hence, we observe further improvements with higher N of 5 or 7
significantly only in the outlier projects. For example, from N = 3 to N = 5 we can
only observe an overall improvement of 0.01%. Lastly, we note that the impact highly
depends on whether the project uses code patterns that the IntervalList domain can
detect (range is from no change to 1.73%).

53

5 Results

Overall Per project

N abs. rel. mean median min max std

0 202858 10676.7 5632.0 0 44800 12390.6

2 +547 0.27% 0.28% 0.21% 0.0% 1.73% 0.38%

3 +779 0.38% 0.4% 0.28% 0.0% 1.73% 0.43%

5 +796 0.39% 0.4% 0.28% 0.0% 1.73% 0.43%

7 +802 0.39% 0.41% 0.28% 0.0% 1.73% 0.43%

Table 5.1: Overall newly proven unreachable code statements.

For an alternative overview we consider newly found unreachable code alarms. This
is the number of instances for which the analyzer with the help of the IntervalList
domain could prove that for all instances a condition can never occur whereas the first
metric captures the actual unreachable statements. As we can see in Table 5.2 with this
metric the overall improvement is more than double when we only count unreachable
code statements and at more than 1.3% and the maximal project improvement was
2.33%.

However, this metric reveals that for some outlier projects with lower N the analyzer
is able to prove less code as unreachable. This occurs in projects with concurrency and is
a result of a different behavior in parallel widening when local precision improvements
increase the number of required widening iterations for finding a fixpoint. In particular,
at the moment the Astrée static analyzer uses global widening to find a fixpoint over
the individual process states. In its current implementation, the Astrée static analyzer
delays parallel widening for a fixed amount of widening steps and otherwise defines
the widen operation to always result in the > element of a domain. In such worst-
case projects, local precision improvements lead to a more delayed parallel widening
iterations and a worsened approximation (>) and possibly its transitive dependencies.

54

5 Results

Overall Per project

N abs. rel. mean median min max std

0 4089 215.2 0.0 0 2453 599.9

2 +19 0.46% 0.21% 0.58% -0.77% 0.82% 0.86%

3 +48 1.16% 1.02% 1.35% -0.39% 2.1% 1.27%

5 +55 1.33% 1.22% 1.47% -0.13% 2.33% 1.25%

7 +57 1.37% 1.31% 1.47% 0.13% 2.33% 1.11%

Table 5.2: Overall new unreachable alarms.

5.1.2 Run-time error findings

In Table 5.3 we provide an overview of the change in run-time error findings. We can
observe that there are huge discrepancies between the individual projects as the relative
run-time error alarm findings can be reduced by more than 8 % or even be slightly
increased by 0.36%. However, these projects have a quite different application, style,
and size. The increase in run-time error findings in the worst project observed comes
from projects with concurrency and the above mentioned problem of locally improved
approximations increasing the number of required global parallel widening iterations
and approximating to > after the parallel widening delay. Overall, we observed an
improvement of 0.28% (1.1% per project) less false run-time errors with N = 2 and a
smaller additional improvement of 0.35% (1.22% per project) when storage for a second
hole (N = 3) is provided, and another slight improvement by 0.01% (0.03% per project)
for N = 5. However, for bigger interval list sizes (N = 7) almost no improvements were
observed.

Overall Per project

N abs. rel. mean median min max std

0 74866 3940.3 990.0 0 18144 6136.1

2 -208 -0.28% -1.1% -0.22% -8.42% 0.36% 2.17%

3 -260 -0.35% -1.22% -0.34% -8.42% 0.27% 2.13%

5 -266 -0.36% -1.25% -0.37% -8.42% 0.27% 2.14%

7 -267 -0.36% -1.28% -0.37% -8.42% 0.27% 2.16%

Table 5.3: Overall change in run-time error findings.

55

5 Results

5.1.3 Analysis duration and memory usage

We measured the overall analysis duration, but the results were non-deterministic and
hard to reproduce. We observed values in −46%− 55%. Furthermore, the results were
impacted by the exact development version of Astrée used and the current load of the
workstation. Hence, we have decided to omit these unreliable measurements and direct
the reader to either the memory usage measurements below or the moderately stable
analysis time comparison with the larger industry code example in subsection 5.2.3.

In Table 5.4 we list the measured memory usage between the baseline version and
different version of the IntervalList domain. While these results were reproducible, the
individual variations are less obvious. However, we can say that the average overhead
cost of the IntervalList domain is between 7− 11% (5− 8% per project). In some projects
proving more code statements unreachable can lead to less partitioning or smaller
partition spaces and, thus an overall memory usage reduced by up to 18%. However, it
is also possible for the opposite to happen and memory usage to drastically increase
(up to 40%). We measured this in two outlier projects with many concurrent processes
in which local precision improvements lead to more local fixpoint iterations and, thus a
different global fixpoint, both leading to higher memory usage.

Overall Per project

N abs. rel. mean median min max std

0 44224 2327.6 1940.0 0 6501 1877.9

2 +3540 7.41% 5.35% 2.13% -17.69% 31.79% 13.85%

3 +5306 10.71% 7.92% 11.12% -14.95% 39.94% 13.06%

5 +5272 10.65% 7.22% 7.13% -18.07% 39.94% 14.15%

7 +3712 7.74% 5.58% 7.12% -18.07% 18.49% 10.81%

Table 5.4: Overall memory usage in MB.

56

5 Results

5.2 Large industry example

We evaluated the effects of the IntervalList domain on a bigger industrial code of an
automotive software. This code contains approximately 5000 functions and has an
overall size of 400.000 physical lines of source code (comment and whitespace lines
excluded). The number of recursive paths in its call graph was slightly below 10.000.
Furthermore, this code spawns up to 26 different processes. The analysis reaches
approximately 71.200 of the overall XXX (redacted) statements.

All analyses were performed on a workstation with an Intel(R) Xeon(R) CPU E5-1620
v4 @ 3.50GHz processor and 256 GB RAM. An overview of the results can be found in
Table 5.6. We observed six major findings:

1. Statically proven unreachable code increased by 0.5% and unreachable code
alarms increased by 5.6% (subsection 5.2.1).

2. False run-time errors reported by the Astrée static analyzer decreased by 0.6%
(subsection 5.2.2).

3. Memory usage reduction by 18− 38% (subsection 5.2.3).

4. Analysis runtime increase by 7− 22% (subsection 5.2.3).

5. No further improvements in neither unreachable code lines nor alarms with
interval list sizes higher than 4 (subsection 5.2.1 and subsection 5.2.2).

6. Analysis time overhead and memory usage minimum at N = 5 (subsection 5.2.3).

We will first discuss these overview findings and afterwards provide real examples
for recognized patterns by the IntervalList domain.

57

5 Results

5.2.1 Unreachable code statements

One of the major benefits of the extremal domain is that it helps to prove code statements
as unreachable:

Reachable code Unreachable alarms

N abs. rel. abs. rel.

0 58383 3928

2 -254 -0.44 % +183 4.66%

3 -316 -0.54 % +230 5.86%

4 -312 -0.54 % +222 5.65%

5 -312 -0.54 % +222 5.65%

7 -312 -0.54 % +222 5.65%

Table 5.5: Overview of reachable code statements and unreachable code alarms. Rows
N = 2 to N = 7 are relative to the prior results from the baseline run (N = 0).

Apart from detecting dead code with one interval hole (i.e. extremal values) which
motivated the design of this domain, variables with two holes are very common as well.
For example, they could be part of a state machine which can now be proven to have
unreachable cases. In subsection 5.3.1 we provide individual examples of code pattern
from this project that can now be proven to be unreachable.

5.2.2 Alarm findings

We provide an overview of differences in run-time error findings in Table 5.6. We listed
flow anomaly alarms and data race alarms separately are they can only be influenced
indirectly by the IntervalList domain. An example of a flow anomaly alarm is an
alarm about the read of a global variable that has not been proven to be initialized (see
subsection 5.3.4 for an example).

Additionally, Astrée has a vast category of rule checks that can be enabled. For
example, one such rule check is to warn the user about invariants that are truthy or
falsy in all paths (see subsection 5.3.3 for a detailed example). However, as projects use
different rules checks and rule checks themselves only warn the user about a potential
logic error or code style problem, rule checks are difficult to compare and have not been
listed in the overview table. However, we provide a detailed listing of all individual
alarm changes in Table 5.7 and included impacted rule check categories in this table.

58

5 Results

In summary, we observe up to 30 (0.6%) less run-time errors. The four individual
alarm run-time error categories that were improved are: (I) conversion overflow, (II)
field overflow upon dereference, (III) array out-of-bounds error, (IV) invalid pointer
arithmetic, and (V) overflow in arithmetic. Moreover, no changes in the data race alarm
category were observed, but a similar percentage of false flow anomalies was removed.
As with unreachable code we see the biggest improvement across all categories with
N = 2 already and only a small increase for N = 3. As before, with more intervals
(N = 4) there are even additional improvements and no improvements for N > 4 were
observed.

Runtime
errors

Flow
anomalies

Alarms
overall

N abs. rel. abs. rel. abs rel.

0 5005 2815 7856

2 -22 -0.44 % -18 -0.64 % -40 -0.51 %

3 -27 -0.54 % -19 -0.67 % -47 -0.60 %

4 -30 -0.60 % -18 -0.64 % -48 -0.61 %

5 -30 -0.60 % -18 -0.64 % -48 -0.61 %

7 -30 -0.60 % -18 -0.64 % -48 -0.61 %

Table 5.6: Overview of runtime-error alarm changes, flow anomalies alarms, and overall
alarm changes. Data races alarms were not explicitly stated as they remained
constant (36), but were included in the overall alarm column.

In the more detailed overview of the individual alarm categories Table 5.7 we can see
that only two run-time error categories improve for N > 2: (I) overflow in conversion
errors and (II) out-of-bound array access errors. For flow anomaly alarms and rule
checks, however, we observe small improvements up to N = 5. The increase by one
in the "overflow in arithmetic" error is due to more parallel widening iterations which
exceeds the initial widening delay and triggers a parallel widening which at the moment
widens to > and an information loss compared to the baseline.

59

5 Results

Finding category N=0 N=2 N=3 N=4 N=5

Arithmetics on invalid pointers 301 -9 -9 -9 -9

Out-of-bound array access 145 -5 -7 -7 -7

Possible overflow upon dereference 720 -3 -3 -3 -3

Overflow in conversion 1435 -5 -11 -11 -11

Overflow in arithmetic 689 +1 +1 +1 +1

Incorrect field dereference 15 -1 -1 -1 -1

Read of global/static variable before init 2791 -18 -19 -19 -20

Controlling invariant 1830 +55 +67 +67 +67

Array index range 144 -5 -8 -8 -18

Unused suppress directives 1101 0 +1 +1 +1

Table 5.7: Individual alarm changes in project X. N=7 was omitted as there were no
changes over N=5. The first block lists run-time errors, the second flow
anomaly alarms (read of a global/static variable), and the last block rule
check violations.

5.2.3 Analysis runtime and memory usage

In Table 5.8 we provide an overview of the impact of the IntervalList domain on the
analysis runtime and memory usage. The two overall patterns are: (1) significant de-
crease in memory usage by 18− 38% whereas (2) analysis runtime increases by 8− 22%.

In greater detail we can observe that memory usage decrease monotonically improves
until N = 5 and only for a high N = 7 this trend stops. As we did not observe any
additional alarm improvements for N = 7 the slight increase by 0.1% comes from the
overhead of the longer list data structure and more costly arithmetic operations.

For the analysis duration we can observe a similar trend with a minimum of the
least overhead at N = 5. The outlier N = 3 is harder to explain and might be the
consequence of more precision and, thus more iterations from N = 2 to N = 3, but a
significant pruning improvement through unreachable code with N = 4.

60

5 Results

Memory (MB) Duration (mins)

N absolute relative absolute relative

0 55260 642

2 -10006 -18.1 % +115 +17.9 %

3 -17423 -31.5 % +139 +21.7 %

4 -17400 -31.5 % +86 +13.4%

5 -21071 -38.1 % +50 +7.8 %

7 -20983 -38.0 % +62 +9.7 %

Table 5.8: Memory (MB) usage and runtime duration (mins) in project X.

61

5 Results

5.3 Code patterns of improved alarms

We will have a more detailed look into the individual findings and show what patterns
the IntervalList domain helps to detect. Code examples were taken from the previously
discussed industry project (Section 5.2), but have been obfuscated and simplified, so
that they only show an outline of the pattern involved.

5.3.1 Unreachable code

One important aspect of the IntervalList domain is that it stores more value information
about a variable than the traditional interval, bitfield or finite set abstract domains. In
particular, and in contrast to the traditional interval range, it is aware of holes. For
example, this allowed for the identification of unreachable if-clauses (see Listing 5.1)
and the marking of certain switch-cases (see Listing 5.2) as unreachable. In the following
example (Listing 5.1) the prior information about programVar was [0, 11], but with
IntervalList domain the variable was approximated to {[0, 8], 11} and thus the
analyzer is aware of the hole:

Listing 5.1: Unreachability via conditions

if(programVar == 10u)
{
... // now unreachable

}

A variation is a switch block in Listing 5.2 for which certain cases can now be proven
to be unreachable. This is because state would traditionally only be [0, 10], but now
it is {[0, 5], [7, 10]} and STATE_G can correctly be identified as unreachable:

Listing 5.2: Unreachability via switch blocks

switch (state) {
case STATE_A: // 0

...
break;

...
case STATE_G: // 6

... // now unreachable
break;

...
}

The most common dead branch identified is the default case. The IntervalList

62

5 Results

domain can also directly create holes through refinement. In a simplified example
(Listing 5.3) taken from this project, mode is known to have range of [1, 3] at the
begin of program block. As the interval domain cannot memorize holes, it cannot use
the negation of 2u == mode for refining its approximation. However, the IntervalList
domain is able to memorize holes from ranges and can store a better approximation
of mode at the first else if as {1, 3}. After, two more refinement tests operations
the IntervalList domain represents mode as ⊥ and can prove the final else body to be
unreachable:

Listing 5.3: Unreachability via refinement

unsigned char mode; // [1, 3]
if(2u == mode) {
// ...

} else if(1u == mode) { // {1, 3} /\ [1, 3]
// ...

} else if(3u == mode) { // {3} /\ [2, 3]
// ...

} else {
// now unreachable, before: [2, 2]

}

Incidentally, when program nodes can be proven to be unreachable this very often
leads to a decrease in runtime alarms as all alarms appearing in respective unreachable
code can no longer be triggered. For example, in Listing 5.4, removal of the default
case in FunA increased the precision of the return value of FunA to be non-zero and thus
in this cascade the analyzer can determine a to always be 1 after the loop:

Listing 5.4: Transitive unreachability improvements

unsigned char a = 1;
for(unsigned long i = 0; i <= arr_length; i++) {
if(!(0x00u == FunA(i, ...)) {
a = 0; // now unreachable
break;

}
}
if (a == 1) { ... } else {
// now unreachable

}

63

5 Results

5.3.2 Array Out-of-Bounds

In many projects maximal values of a variable are used to symbolize invalid states.
The IntervalList domain allows to store these extremal states and avoids the otherwise
common Out-of-Bounds alarms. An example of this pattern taken from the analyzed in-
dustry project is provided in Listing 5.5. Here, function fun1 returned a variable whose
state would normally be approximated by [0, 255], but now it can be approximated
better with {0, [254, 255]} and, subsequently the extremal values can be removed
precisely. Afterwards, the approximation of text is not [0, 253] as in the interval
domain, but 0:

Listing 5.5: Array Out-of-Bounds alarm

unsigned char fun1() {
unsigned char r = 254;
do {
if (...) {
r = 0;

} else {
r = 255;

}
} while (...);
return r;

}
unsigned char fun2() {
unsigned char r = fun1(); // {0, [254, 255]} /\ [0, 255]
if (r == 254) return 1;
if (r == 255) return 1;
unsigned char v = arr[r].member; // {0}, no out-of-bound
...

}

5.3.3 Invariants

An invariant alarm is triggered when expressions in conditionals, if- or iteration-
statements are invariant for each evaluated context (e.g. 1 == 1 or 0 == 1). In the
industry example (Listing 5.6) the state of error has been [36, 255] in the baseline
run. With the IntervalList domain the approximation was improved to {36, [39, 42],
255} and thus the analyzer can prove that error can never be 254:

64

5 Results

Listing 5.6: Controlling invariant

unsigned char error = 255;
if (...) {

error = 36;
} else if (...) {

error = 39;
} else if (...) {

error = 41;
} else if (...) {

error = 42;
}
... // error = {36, [39, 42], 255} /\ [36, 255]
if (error == 254) { // INVARIANT ERROR
...

}

5.3.4 Read of a not written global variable

The IntervalList domain can also help to improve the precision of tracking of reads
to potentially unwritten variables. In the example in Listing 5.7 the read of global
variable globalVar in fun3 triggers an alarm as the uninitialized global might be read
before it has been initialized. The IntervalList domain approximates the value of r
better in fun to {[0, 1], 10} instead of [0, 10]. In the else-body the negation of r
== 10 condition leads to a more precise refinement of r instead of before [0, 9] to
{[0, 1]}. Hence, the analyzer can prove that fun2 writes to globalVar in all cases and
subsequently the variable must be initialized in fun3. Consequently, the false invariant
alarm does not get reported with the IntervalList domain in fun3.

65

5 Results

Listing 5.7: Read of a not written global variable

unsigned char globalVar;
void fun1() {
unsigned char r = 10;
if (...) {
r = 0;

} else {
r = 1;

}
// r = {[0, 1], 10} /\ [0, 10]
...
if (r == 10) { ...} else {
fun2(r);
fun3();

}
}
void fun2(unsigned char r) { // r = {[0, 1]} /\ [0, 9]
switch (r) {
case 0:
globalVar = 2;
break;

case 1:
globalVar = 4;
break;

...
default:
break;

}
}
void fun3() {
if (globalVar == 2) {
... // No read of unwritten global variable error

}
}

66

6 Summary

In this work - motivated by code patterns from industrial software - we discussed Ab-
stract Interpretation for variables with values in disjunctive intervals. For this problem
we proposed a dedicated abstract value domain - the IntervalList domain (Chapter 3).
This specialized abstract domain was implemented and integrated in the Astrée Static
Analyzer (Chapter 4). We evaluated the impact on 19 medium-sized industry codes
from mostly automotive and avionic software (Section 5.1) and one large industrial
automotive code (Section 5.2). In addition, we presented examples of code patterns for
which the IntervalList domain can help to reduce precision loss (Section 5.3).

In summary, we observed that the IntervalList domain is able to prove more un-
reachable code blocks on average by 1.4% in medium-sized code and by 5.5% in large
code. Relative to all prior reachable statements, this resulted in 0.4 (medium-sized)
to 0.5% (large) more code statements being proven as unreachable. Furthermore, the
domain helped to reduce the number of reported false run-time errors overall by 0.3%
in medium-sized code (on average per project by 1.3%) and 0.6% in the large code
example for which many advanced domains cannot be enabled.

The impact on memory usage depends heavily on the code as improvements in
proven unreachable code can either reduce the for partitioning or decrease its space or
through general list allocation overhead and more iterations lead to an increase. For the
medium-sized codes increased overall about 7− 11% (5− 8% on average per project)
and for the large industry code memory usage significantly decreased by 18− 38%.
In medium-sized code the analysis time varied drastically based on the code and
external factors (version of the Astrée development build, load of the workstation),
but in the large industry code example we measured an analysis run-time increase of
7− 22% which is mostly caused by more widening iterations due to more retained
local precision.

As the IntervalList domain was implemented as an optional domain, performance
improvements are expected with a tighter integration into the traditional interval
domain as duplicated computational efforts can be avoided. Additionally, the results
show that for N = 2 a majority of all improvements can be observed (50− 80%) and
most gains are reached for N = 3 (> 90%). Hence, another improvement would be to
use 3 as a fixed list size and optimize the implementation accordingly.

67

6 Summary

In conclusion, the IntervalList domain trades analysis run-time and memory usage
for less precision loss and our experimental results show that this trade-off can be a
good choice for certain real-world industrial code.

68

List of Figures

1.1 Visualization of different improvements to the interval abstract domain 4

2.1 Hasse diagram of the interval abstract domain (DI ,v) 8

3.1 Examples of non-unique interval representations 19
3.2 Hasse diagram of the IntervalList abstract domain (DE,v) for {−1, 0, 1} 22
3.3 Hasse diagram of the IntervalList abstract domain (DE,v) for {0, 1, 2, 3} 22
3.4 Example of an IntervalList intersection 26

4.1 Backward inequality test examples for the IntervalList 42
4.2 Example of IntervalList widening with and without delays 47
4.3 Example of partitioning in IntervalList widening 47
4.4 Example of IntervalList widening for partially matching intervals 48
4.5 Example of IntervalList widening with additional intervals 49

69

List of Tables

5.1 Overall newly proven unreachable code statements 54
5.2 Overall new unreachable alarms . 55
5.3 Overall change in run-time findings . 55
5.4 Overall memory consumption . 56
5.5 Unreachable code changes for industry example X 58
5.6 Overview of changes in run-time error findings for industry example X 59
5.7 Individual alarm changes in project X . 60
5.8 Memory usage and runtime duration in project X 61

70

Bibliography

[Ber+10] Julien Bertrane et al. “Static analysis and verification of aerospace software
by abstract interpretation.” In: AIAA Infotech@ Aerospace 2010. 2010, p. 3385.

[Bir48] Garrett Birkhoff. “Lattice theory, rev. ed.” In: Amer. Math. Soc. Colloq. Publ.
Vol. 25. 1948.

[CC76] Patrick Cousot and Radhia Cousot. “Static determination of dynamic prop-
erties of programs.” In: Proceedings of the Second International Symposium on
Programming. Dunod, Paris, France, 1976, pp. 106–130.

[CC77] Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints.” In: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages. 1977, pp. 238–252.

[CC79] Patrick Cousot and Radhia Cousot. “Systematic design of program analysis
frameworks.” In: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. 1979, pp. 269–282.

[CC92a] Patrick Cousot and Radhia Cousot. “Abstract interpretation and application
to logic programs.” In: The Journal of Logic Programming 13.2-3 (1992), pp. 103–
179.

[CC92b] Patrick Cousot and Radhia Cousot. “Abstract interpretation frameworks.”
In: Journal of logic and computation 2.4 (1992), pp. 511–547.

[CC93] Patrick Cousot and Radhia Cousot. “Galois connection based abstract inter-
pretations for strictness analysis.” In: Formal Methods in Programming and
Their Applications. Springer. 1993, pp. 98–127.

[Cou+05] Patrick Cousot et al. “The ASTRÉE analyzer.” In: European Symposium on
Programming. Springer. 2005, pp. 21–30.

[Cou+09] Patrick Cousot et al. “Why does Astrée scale up?” In: Formal Methods in
System Design 35.3 (2009), pp. 229–264.

[Cou00] Patrick Cousot. “Abstract interpretation: Achievements and perspectives.”
In: Proceedings of the SSGRR 2000 Computer & eBusiness International Confer-
ence. 2000.

71

Bibliography

[DP02] Brian A Davey and Hilary A Priestley. Introduction to lattices and order.
Cambridge university press, 2002.

[DS07] David Delmas and Jean Souyris. “Astrée: from research to industry.” In:
International Static Analysis Symposium. Springer. 2007, pp. 437–451.

[Min04] Antoine Miné. “Weakly relational numerical abstract domains.” PhD thesis.
2004.

[SWH12] Helmut Seidl, Reinhard Wilhelm, and Sebastian Hack. Compiler Design:
Analysis and Transformation. Springer Science & Business Media, 2012.

72

	Acknowledgments
	Abstract
	Contents
	Introduction
	Interval abstract domain
	Numerical domain
	Interval operations
	Partial order
	Interval lattice
	Abstract relationship
	Interval abstract operators
	Forward operators
	Backward operators

	Fixpoint approximation
	Widening
	Narrowing

	IntervalList abstract domain
	Definition
	Partial order
	Lower and upper bound
	Hasse diagram
	Normalization
	Lattice
	Abstract and concrete relationships
	Galois connection
	Soundness correspondence

	IntervalList operations
	Relations
	Subset
	Equality

	Transfer functions
	Union
	Intersection
	Forward arithmetic initialization
	Forward unary arithmetic operations
	Forward binary arithmetic operations
	Backward comparison tests
	Widening

	Results
	Medium-sized project evaluation
	Unreachable code statements
	Run-time error findings
	Analysis duration and memory usage

	Large industry example
	Unreachable code statements
	Alarm findings
	Analysis runtime and memory usage

	Code patterns of improved alarms
	Unreachable code
	Array Out-of-Bounds
	Invariants
	Read of a not written global variable

	Summary
	List of Figures
	List of Tables
	Bibliography

